Skip to main content
U.S. flag

An official website of the United States government

Residential and service-population exposure to multiple natural hazards in the Mount Hood region of Clackamas County, Oregon

April 16, 2013

The objective of this research is to document residential and service-population exposure to natural hazards in the rural communities of Clackamas County, Oregon, near Mount Hood. The Mount Hood region of Clackamas County has a long history of natural events that have impacted its small, tourism-based communities. To support preparedness and emergency-management planning in the region, a geospatial analysis of population exposure was used to determine the number and type of residents and service populations in flood-, wildfire-, and volcano-related hazard zones. Service populations are a mix of residents and tourists temporarily benefitting from local services, such as retail, education, or recreation. In this study, service population includes day-use visitors at recreational sites, overnight visitors at hotels and resorts, children at schools, and community-center visitors. Although the heavily-forested, rural landscape suggests few people are in the area, there are seasonal peaks of thousands of visitors to the region. “Intelligent” dasymetric mapping efforts using 30-meter resolution land-cover imagery and U.S. Census Bureau data proved ineffective at adequately capturing either the spatial distribution or magnitude of population at risk. Consequently, an address-point-based hybrid dasymetric methodology of assigning population to the physical location of buildings mapped with a global positioning system was employed. The resulting maps of the population (1) provide more precise spatial distributions for hazard-vulnerability assessments, (2) depict appropriate clustering due to higher density structures, such as apartment complexes and multi-unit commercial buildings, and (3) provide new information on the spatial distribution and temporal variation of people utilizing services within the study area.

Estimates of population exposure to flooding, wildfire, and volcanic hazards were determined by using overlay analysis in a geographic information system. Population exposure to flood hazards is low (less than 10 percent of residents) and does not vary substantially between 100-year and 500-year flood-hazard scenarios. Moderate, moderate-to-high, and high wildfire-risk areas within the study region account for 72 percent of residents, 62 percent of employees, and 60 percent of daytime visitors to recreation sites. Fifteen percent of businesses in the study area are in moderate-to-high or high wildfire-risk areas but these businesses represent 51 percent of the local workforce. A volcanic event at Mount Hood could directly impact up to 60 percent of residents in their homes and 87 percent of employees at their workplaces. The proximal volcanic-hazard zone alone includes 65 percent of employees, 80 percent of schools and community facilities, more than 60 percent of overnight visitors in peak seasons, and 82–100 percent of daytime visitors to recreation sites during the summer and winter months, respectively. The number of day-use visitors to recreation sites in the region is greatest during winter months (averaging 129,300 people per month), whereas overnight visitors are greatest during summer months (averaging 34,000 per month). This analysis of residential and service-population exposure to natural hazards supports the development of targeted risk-reduction efforts in the region, while also expanding the discourse on characterizing and assessing population dynamics in tourist-frequented areas.

Publication Year 2013
Title Residential and service-population exposure to multiple natural hazards in the Mount Hood region of Clackamas County, Oregon
DOI 10.3133/ofr20131073
Authors Amy M. Mathie, Nathan Wood
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2013-1073
Index ID ofr20131073
Record Source USGS Publications Warehouse
USGS Organization Western Geographic Science Center
Was this page helpful?