Skip to main content
U.S. flag

An official website of the United States government

Results of 2018–19 water-quality and hydraulic characterization of aquifer intervals using packer tests and preliminary geophysical-log correlations for selected boreholes at and near the former Naval Air Warfare Center Warminster, Bucks County, Pennsylva

March 18, 2024

The U.S. Geological Survey (USGS) collected data on the vertical distribution of hydraulic head, specific capacity, and water quality using aquifer-interval-isolation tests and other vertical profiling methods in 15 boreholes completed in fractured sedimentary bedrock in Northampton, Warminster, and Warwick Townships, Bucks County, Pennsylvania during 2018–19. This work was done, in cooperation with the U.S. Navy, to support detailed investigations at and near the former Naval Air Warfare Center (NAWC) Warminster, where groundwater contamination with per- and polyfluoroalkyl substances (PFAS) had become a concern since 2014. Two PFAS compounds, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been measured in groundwater samples from supply and monitoring wells at or near NAWC Warminster in concentrations above U.S. Environmental Protection Agency health advisory levels for drinking water. The area is underlain by the Triassic Stockton Formation, which predominantly consists of sandstone interbedded with shale and siltstone beds and forms a layered fractured-rock aquifer used for private, industrial, and public drinking water supply.

The vertical distribution of aquifer properties and water quality was assessed through hydraulic tests and sampling of aquifer intervals using a straddle-packer system (13 boreholes) or depth-discrete point sampling under known borehole-flow conditions (2 boreholes). Geophysical and video logs collected by USGS during 2017–19 were used to identify potential water-bearing fractures in 15 boreholes, which ranged in depth from 210 to 604 feet (ft) and included 6 boreholes drilled in 2018 and 9 existing wells on or near the former NAWC Warminster. Measured borehole flow was predominantly downward in most of the deepest boreholes (greater than 400 ft), which were commonly located at the highest land-surface elevations, with inflow from fractures at relatively shallow depths and outflow through fractures near or below depths of 500 ft below land surface. Hydraulic head differences measured during packer tests were up to about 60 ft between shallow and deep intervals. Borehole flow was predominantly upward in most boreholes less than 400 ft in depth and farther from, and at lower land-surface elevations than, the former NAWC Warminster. Total borehole specific capacity ranged from about 0.07 to 41 gallons per minute per foot [(gal/min)/ft]. Specific-capacity values for individual intervals ranged from 0.02 to 40.0 (gal/min)/ft, with a median of 1.14 (gal/min)/ft and a large range in values at most depths.

Differences in water quality of samples as indicated by field properties (pH, dissolved oxygen, and specific conductance) and concentrations of dissolved major ions, PFOA, and PFOS were apparent among isolated intervals in the boreholes. Summed concentrations of PFOA and PFOS ranged from about 11 to 10,780 nanograms per liter (ng/L) and were greater than the 2016 U.S. Environmental Protection Agency health advisory of 70 ng/L for summed PFOA and PFOS concentrations in 62 of 104 intervals and discrete depths tested. The mass ratio of PFOS to PFOA was generally higher than 1.0 in samples with summed PFOA and PFOS concentrations greater than 70 ng/L, with ratio values as high as 8.7. In many boreholes, summed concentrations of PFOA and PFOS were positively related to chloride concentrations, which were elevated above natural-background values [less than 10 milligrams per liter] in most samples and as high as 717 milligrams per liter. Sources of the elevated chloride other than, or in addition to, common rock salt (sodium chloride) were indicated by chloride to sodium molar ratios greater than 1.0. Water-quality data indicated that sampled water from some intervals with lower hydraulic heads may be affected by water from intervals with higher hydraulic heads because of vertical flow in open boreholes; samples from these intervals with lower hydraulic heads may not be fully representative due to some component of cross contamination and should be interpreted with caution.

Through a preliminary correlation of natural gamma and resistivity logs of boreholes drilled at and near the former NAWC Warminster, 11 lithologic units were identified and interpreted to strike northeast and dip to the northwest. Hydraulic heads were generally highest in isolated intervals that intercepted beds which, when projected up dip, crop out at the highest land-surface elevation on the former NAWC Warminster, indicating that the dipping-bed structure and topography are factors affecting the distribution of hydraulic head in the aquifer. The hydrogeologic framework in conjunction with the vertical distribution of hydraulic heads and water quality may assist in evaluating the locations of various PFAS sources and potential migration pathways of PFAS in groundwater at and near NAWC Warminster.

Publication Year 2024
Title Results of 2018–19 water-quality and hydraulic characterization of aquifer intervals using packer tests and preliminary geophysical-log correlations for selected boreholes at and near the former Naval Air Warfare Center Warminster, Bucks County, Pennsylva
DOI 10.3133/ofr20241007
Authors Lisa A. Senior, Alex R. Fiore
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2024-1007
Index ID ofr20241007
Record Source USGS Publications Warehouse
USGS Organization New Jersey Water Science Center; Pennsylvania Water Science Center