Skip to main content
U.S. flag

An official website of the United States government

Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes

September 18, 2020

In terrestrial and marine ecosystems, remote sensing has been used to estimate gross primary productivity (GPP) for decades, but few applications exist for shallow freshwater ecosystems.Here we show field-based GPP correlates with satellite and airborne lake color across a range of optically and limnologically diverse lakes in interior Alaska. A strong relationship between in situ GPP derived from stable oxygen isotopes (δ18O) and space-based lake color from satellites (e.g. Landsat-8, Sentinel-2 and CubeSats) and airborne imagery (AVIRIS-NG) demonstrates the potential power of this technique for improving spatial and temporal monitoring of lake GPP when coupled with additional field validation measurements across different systems. In shallow waters clear enough for sunlight to reach lake bottoms, both submerged vegetation (macrophytes and algae) and phytoplankton likely contribute to GPP. The stable isotopes and remotely sensed shallow lake color used here integrate both components. These results demonstrate the utility of lake color as a feasible means for mapping lake GPP from remote sensing. This novel methodology estimates GPP from remote sensing in shallow lakes by combining field measurements of oxygen isotopes with airborne, satellite and CubeSat imagery. This use of lake color for providing insight into ecological processes of shallow lakes is recommended, especially for remote arctic and boreal landscapes.

Publication Year 2020
Title Satellite and airborne remote sensing of gross primary productivity in boreal Alaskan lakes
DOI 10.1088/1748-9326/aba46f
Authors Catherine D. Kuhn, Matthew J. Bogard, Sarah Ellen Johnston, Aji John, Eric Vermote, Rob Spencer, Mark M. Dornblaser, Kimberly P. Wickland, Robert G. Striegl, David Butman
Publication Type Article
Publication Subtype Journal Article
Series Title Environmental Research Letters
Index ID 70214084
Record Source USGS Publications Warehouse
USGS Organization WMA - Earth System Processes Division