Skip to main content
U.S. flag

An official website of the United States government

The Tintina Gold Belt - A global perspective

January 1, 2000

The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon-Tanana terrane (e.g., Fort Knox, True North, Ryan Lode, Kantishna district) and inland into the passive-margin rocks of the Selwyn basin ( e.g., Scheelite Dome, Brewery Creek, Dublin Gulch), respectively. By 70 Ma, the arc had migrated to the vicinity of present-day southwestern Alaska, where it was associated with the formation of additional orogenic Au deposits (e.g., Willow Creek district) and, within still-preserved shallow crustal levels, epithermal Au systems (e.g., Donlin Creek). The Au-bearing deposits of the Tintina Gold Belt are typical of those found in most well-preserved, moderate- to high-temperature Phanerozoic collisional orogens. Around the circum-Pacific region, these would include large areas of Mesozoic tectonism along the Cordilleran orogen, throughout the Russian Far East, and along the margins of the North China craton. Favorable terrain for such Au belts of Paleozoic age worldwide include the active Gondwana margins (e.g., Tasman orogenic system, northern Africa, Telfer district), and the northern margins ( e.g., Caledonian Kazakhstania, Uralian orogen, Baikal orogen, Tian Shan orogenic system) and western margins ( e.g., southern European massifs) to the Paleo-Tethys Ocean. Gold lodes in all of the Phanerozoic belts are dominated by orogenic Au-deposit types; other deposit types are concentrated where relatively shallow levels to the orogens are locally preserved. A significant percentage of the lode-gold resource in many areas was lost to placer accumulation that began forming approximately 100 m.y. after hypogene ore formation, except where continent-continent collision "cratonized" highly mineralized terranes in central Asia.

Publication Year 2000
Title The Tintina Gold Belt - A global perspective
Authors Richard J. Goldfarb, Craig J. R. Hart, Marti L. Miller, Lance D. Miller, G. Lang Farmer, David I. Groves
Publication Type Book Chapter
Publication Subtype Book Chapter
Index ID 70186627
Record Source USGS Publications Warehouse
USGS Organization Alaska Science Center