Vascular plant and vertebrate species richness in national parks of the eastern United States
Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate species richness. Plant species richness should be included with other variables such as area and climate when considering strategies to manage and conserve species in US National Parks. It is not always appropriate to draw conclusions about analyses of taxonomic surrogates from one area to another. Two patterns evident from the linear regressions were the increase in species richness with the increase of park area and with increase of vascular plant species richness. To test whether there were differences in these patterns among networks, we used analysis of covariance (ANCOVA). Differences among networks were detected only in bird species richness versus plant species richness and for all taxa except mammals for vertebrate species richness versus park area. Some of these results may be due to small sample size among networks, and therefore, low statistical power. Other factors that could have contributed to these results were differences in average park area and habitat heterogeneity among networks, latitudinal gradients, low variation in mean annual precipitation, and different use of vegetation by migratory species. Based on these results we recommend that management of biodiversity be approached from local and site specific criteria rather than applying management directives derived from other regions of the US. It is also recommended that analyses similar to those presented here be conducted for all national parks, once data become available for all networks in the US, to gain a better understanding of how vascular plant species richness, area, and vertebrate species richness are related in the US.
Citation Information
Publication Year | 2013 |
---|---|
Title | Vascular plant and vertebrate species richness in national parks of the eastern United States |
Authors | Jeffrey S. Hatfield, Kaci E. Myrick, Michael A. Huston, Floyd W. Weckerly, M. Clay Green |
Publication Type | Report |
Publication Subtype | Federal Government Series |
Series Title | Natural Resource Technical Report NPS/NCR/NCRO/NRTR |
Series Number | 2013/002 |
Index ID | 70047837 |
Record Source | USGS Publications Warehouse |
USGS Organization | Patuxent Wildlife Research Center |