Skip to main content
U.S. flag

An official website of the United States government

Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

August 17, 2015

This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area); storage increased by about the same amount to balance the budget. The rate and distribution of recharge throughout the Spring Creek, Nittany Creek, and Spruce Creek Basins is variable as a result of the high degree of hydrogeologic heterogeneity and karst features. The greatest amount of recharge was simulated in the carbonate-bedrock valley, near the toe slopes of Nittany and Tussey Mountains, in the Scotia Barrens, and along the area coinciding with the Gatesburg Formation. Runoff extremes were observed for water years 2001 (dry year) and 2004 (wet year). Simulated average recharge rates (water reaching the saturated zone as defined in GSFLOW) for 2001 and 2004 were 5.4 in/yr and 22.0 in/yr, respectively. Areas where simulations show large variations in annual recharge between wet and dry years are the same areas where simulated recharge was large. Those areas where rates of groundwater recharge are much higher than average, and are capable of accepting substantially greater quantities of recharge during wet years, might be considered critical for maintaining the flow of springs, stream base flow, or the source of water to supply wells. The slopes of the Bald Eagle, Tussey, and Nittany Mountains are relatively insensitive to variations in recharge, primarily because of reduced infiltration rates and steep slopes.

Publication Year 2015
Title Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06
DOI 10.3133/sir20155073
Authors John W. Fulton, Dennis W. Risser, R. Steve Regan, John F. Walker, Randall J. Hunt, Richard G. Niswonger, Scott A. Hoffman, Steven L. Markstrom
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2015-5073
Index ID sir20155073
Record Source USGS Publications Warehouse
USGS Organization Pennsylvania Water Science Center