Skip to main content
U.S. flag

An official website of the United States government

Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001

January 1, 2006

Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.

On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.

Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.

The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).

Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.

Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.

Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.

Publication Year 2006
Title Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001
DOI 10.3133/sir20065292
Authors Steven J. Gerner, Lawrence E. Spangler
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2006-5292
Index ID sir20065292
Record Source USGS Publications Warehouse
USGS Organization Utah Water Science Center
Was this page helpful?