Ken Krauss, Ph.D. (Former Employee)
Science and Products
Filter Total Items: 19
Filter Total Items: 36
No Result Found
Filter Total Items: 195
Wetland tree transpiration modified by river-floodplain connectivity Wetland tree transpiration modified by river-floodplain connectivity
Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White...
Authors
Scott T. Allen, Ken W. Krauss, J. Wesley Cochran, Sammy L. King, Richard F. Keim
Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas
Bottomland hardwood (BLH) forests represent an extensive wetland system in the Mississippi Alluvial Valley and southeastern USA, and it is currently undergoing widespread transition in species composition. One such transition involves increased establishment of sugarberry (Celtis laevigata), and decreased establishment of overcup oak (Quercus lyrata). The ecological mechanisms that...
Authors
Scott T. Allen, Wesley Cochran, Ken W. Krauss, Richard F. Keim, Sammy L. King
The vulnerability of Indo-Pacific mangrove forests to sea-level rise The vulnerability of Indo-Pacific mangrove forests to sea-level rise
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region...
Authors
Catherine E. Lovelock, Donald R. Cahoon, Daniel A. Friess, Glenn R. Guntenspergen, Ken W. Krauss, Ruth Reef, Kerrylee Rogers, Megan L. Saunders, Frida Sidik, Andrew Swales, Neil Saintilan, Le Xuan Thuyen, Tran Triet
Forested wetland habitat Forested wetland habitat
A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g...
Authors
Jamie A. Duberstein, Ken W. Krauss
Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients
The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a...
Authors
Brenda L. Thomas, Thomas W. Doyle, Ken W. Krauss
Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers
Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods
Authors
Rebecca J. Howard, Ken W. Krauss, Nicole Cormier, Richard H. Day, Janelda M. Biagas, Larry K. Allain
Non-USGS Publications**
Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, & M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545-553.
Huxham, M., M. Kumara, L. Jayatissa, K.W. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov & B. Kirui. 2010. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B 365: 2127-2135.
Krauss, K.W. 2009. Mangrove energetics. Ecology 90: 3588-3589. [book review]
Krauss, K.W., C.E. Lovelock, K.L. McKee, L. López-Hoffman, S.M.L. Ewe & W.P. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105-127.
Conner, W.H., T.W. Doyle & K.W. Krauss, Eds., 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Krauss, K.W., J.L. Chambers & D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: advances using baldcypress as a model for restoration. Pages 385-410 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner W.H., K.W. Krauss & T.W. Doyle. 2007. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. Pages 223-253 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner, W.H., C.T. Hackney, K.W. Krauss & J.W. Day, Jr. 2007. Tidal freshwater forested wetlands: future research needs and an overview of restoration. Pages 461-485 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Gardiner, E.S. & K.W. Krauss. 2001. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology 21: 1103-1111.
Krauss, K.W., R.A. Goyer, J.A. Allen & J.L. Chambers. 2000. Tree shelters effective in coastal swamp restoration (Louisiana). Ecological Restoration18: 200-201.
Allen, J.A., K.W. Krauss, N.C. Duke, O. Björkman, D.R. Herbst & C. Shih. 2000. Bruguiera species in Hawai’i: systematic considerations and ecological implications. Pacific Science 54: 331-343.
Doyle, T.W. & K.W. Krauss. 1999. The sands and sambars of St. Vincent Island. Florida Wildlife 53: 22-25.
Krauss, K.W., J.L. Chambers & J.A. Allen. 1998. Salinity effects and differential germination of several half-sib families of baldcypress from different seed sources. New Forests 15: 53-68.
Allen, J.A., W.H. Conner, R.A. Goyer, J.L. Chambers & K.W. Krauss. 1998. Chapter 4: Freshwater forested wetlands and global climate change. Pages 33-44 in G.R. Guntenspergen and B.A Vairin (eds.), Vulnerability of coastal wetlands in the Southeastern United States: climate change research results, 1992-97. U.S. Geological Survey, Biological Resources Division Biological Science Report USGS/BRD/BSR-1998-0002. 101 p.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
Filter Total Items: 19
Filter Total Items: 36
No Result Found
Filter Total Items: 195
Wetland tree transpiration modified by river-floodplain connectivity Wetland tree transpiration modified by river-floodplain connectivity
Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White...
Authors
Scott T. Allen, Ken W. Krauss, J. Wesley Cochran, Sammy L. King, Richard F. Keim
Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas Hydrologic effects on diameter growth phenology for Celtis laevigata and Quercus lyrata in the floodplain of the lower White River, Arkansas
Bottomland hardwood (BLH) forests represent an extensive wetland system in the Mississippi Alluvial Valley and southeastern USA, and it is currently undergoing widespread transition in species composition. One such transition involves increased establishment of sugarberry (Celtis laevigata), and decreased establishment of overcup oak (Quercus lyrata). The ecological mechanisms that...
Authors
Scott T. Allen, Wesley Cochran, Ken W. Krauss, Richard F. Keim, Sammy L. King
The vulnerability of Indo-Pacific mangrove forests to sea-level rise The vulnerability of Indo-Pacific mangrove forests to sea-level rise
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region...
Authors
Catherine E. Lovelock, Donald R. Cahoon, Daniel A. Friess, Glenn R. Guntenspergen, Ken W. Krauss, Ruth Reef, Kerrylee Rogers, Megan L. Saunders, Frida Sidik, Andrew Swales, Neil Saintilan, Le Xuan Thuyen, Tran Triet
Forested wetland habitat Forested wetland habitat
A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g...
Authors
Jamie A. Duberstein, Ken W. Krauss
Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients
The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a...
Authors
Brenda L. Thomas, Thomas W. Doyle, Ken W. Krauss
Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers
Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods
Authors
Rebecca J. Howard, Ken W. Krauss, Nicole Cormier, Richard H. Day, Janelda M. Biagas, Larry K. Allain
Non-USGS Publications**
Kumara, M.P., L.P. Jayatissa, K.W. Krauss, D.H. Phillips, & M. Huxham. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164: 545-553.
Huxham, M., M. Kumara, L. Jayatissa, K.W. Krauss, J. Kairo, J. Langat, M. Mencuccini, M. Skov & B. Kirui. 2010. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London B 365: 2127-2135.
Krauss, K.W. 2009. Mangrove energetics. Ecology 90: 3588-3589. [book review]
Krauss, K.W., C.E. Lovelock, K.L. McKee, L. López-Hoffman, S.M.L. Ewe & W.P. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105-127.
Conner, W.H., T.W. Doyle & K.W. Krauss, Eds., 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Krauss, K.W., J.L. Chambers & D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: advances using baldcypress as a model for restoration. Pages 385-410 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner W.H., K.W. Krauss & T.W. Doyle. 2007. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina. Pages 223-253 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Conner, W.H., C.T. Hackney, K.W. Krauss & J.W. Day, Jr. 2007. Tidal freshwater forested wetlands: future research needs and an overview of restoration. Pages 461-485 in W.H. Conner, T.W. Doyle, K.W. Krauss (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Springer. 505 p.
Gardiner, E.S. & K.W. Krauss. 2001. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology 21: 1103-1111.
Krauss, K.W., R.A. Goyer, J.A. Allen & J.L. Chambers. 2000. Tree shelters effective in coastal swamp restoration (Louisiana). Ecological Restoration18: 200-201.
Allen, J.A., K.W. Krauss, N.C. Duke, O. Björkman, D.R. Herbst & C. Shih. 2000. Bruguiera species in Hawai’i: systematic considerations and ecological implications. Pacific Science 54: 331-343.
Doyle, T.W. & K.W. Krauss. 1999. The sands and sambars of St. Vincent Island. Florida Wildlife 53: 22-25.
Krauss, K.W., J.L. Chambers & J.A. Allen. 1998. Salinity effects and differential germination of several half-sib families of baldcypress from different seed sources. New Forests 15: 53-68.
Allen, J.A., W.H. Conner, R.A. Goyer, J.L. Chambers & K.W. Krauss. 1998. Chapter 4: Freshwater forested wetlands and global climate change. Pages 33-44 in G.R. Guntenspergen and B.A Vairin (eds.), Vulnerability of coastal wetlands in the Southeastern United States: climate change research results, 1992-97. U.S. Geological Survey, Biological Resources Division Biological Science Report USGS/BRD/BSR-1998-0002. 101 p.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.