Lauren Tango (Former Employee)
Science and Products
High-Flow Experiments on the Colorado River
Glen Canyon Dam has altered flow and sediment dynamics of the Colorado River in Grand Canyon. Before the dam was completed in 1963, the Colorado River carried a large amount of sand, silt, and clay through Grand Canyon, some of which was deposited during spring floods to create large and abundant sandbars. Sandbars in Grand Canyon are valued as camping areas, create aquatic and riparian habitat...
Airborne Remote Sensing in Grand Canyon
A high-resolution image collection in 2021 will be the most recent in a rich archive of aerial imagery that is used to track changes of the Colorado River in the Grand Canyon. Imagery will be acquired from an airplane in Grand Canyon National Park along the Colorado River corridor and the Little Colorado River starting Memorial Day weekend and continuing through the first week of June 2021. This...
Is timing really everything? Evaluating Resource Response to Spring Disturbance Flows
Glen Canyon Dam has altered ecological processes of the Colorado River in Grand Canyon. Before the dam was built, the Colorado River experienced seasonable variable flow rates, including springtime flooding events. These spring floods scoured the river bottom and enhanced natural processes that sustained the Colorado River ecosystem. Since the dam’s construction in 1963, springtime floods have...
Connectivity of Sand Resources Along the Colorado River in Grand Canyon
We study the links among different geomorphic processes that affect river valley landscapes in the Colorado River downstream from Glen Canyon Dam, Arizona. Dam-released flows affect the deposition and retention of sandbars that serve as sources for other sand resources, such as windblown sand dunes, throughout the Colorado River ecosystem.
Riparian Remote Sensing in the Colorado River and Grand Canyon Region
Riparian vegetation has increased dramatically along the Colorado River downstream of Glen Canyon Dam since the closure of the dam in 1963. The spatial patterns and temporal rates of vegetation increase occur due to changes in river hydrology, dam operations, and climate. The increase in vegetation, particularly onto otherwise bare sandbars, has impacted recreational, geomorphological, biological...
Combining terrestrial lidar with single line transects to investigate geomorphic change: A case study on the Upper Verde River, Arizona
The Upper Verde River in northern Arizona, USA is a vital resource for the wildlife and humans that rely on its waters. We characterize the riparian corridor topography using terrestrial laser scanner (TLS) data from 2021 to 2022. We also quantify geomorphic changes associated with human and climate-driven alterations in river flow and vegetation changes by combining the contemporary...
Authors
Lauren Lynn Tango, Temuulen Tsagaan Sankey, Jackson Leonard, Joel B. Sankey, Alan Kasprak
Forest fire, thinning, and flood in wildland-urban interface: UAV and lidar-based estimate of natural disaster impacts
ContextWildland-urban interface (WUI) areas are facing increased forest fire risks and extreme precipitation events due to climate change, which can lead to post-fire flood events. The city of Flagstaff in northern Arizona, USA experienced WUI forest thinning, fire, and record rainfall events, which collectively contributed to large floods and damages to the urban neighborhoods and city...
Authors
Temuulen Tsagaan Sankey, Lauren Lynn Tango, Julia Tatum, Joel B. Sankey
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
High-Flow Experiments on the Colorado River
Glen Canyon Dam has altered flow and sediment dynamics of the Colorado River in Grand Canyon. Before the dam was completed in 1963, the Colorado River carried a large amount of sand, silt, and clay through Grand Canyon, some of which was deposited during spring floods to create large and abundant sandbars. Sandbars in Grand Canyon are valued as camping areas, create aquatic and riparian habitat...
Airborne Remote Sensing in Grand Canyon
A high-resolution image collection in 2021 will be the most recent in a rich archive of aerial imagery that is used to track changes of the Colorado River in the Grand Canyon. Imagery will be acquired from an airplane in Grand Canyon National Park along the Colorado River corridor and the Little Colorado River starting Memorial Day weekend and continuing through the first week of June 2021. This...
Is timing really everything? Evaluating Resource Response to Spring Disturbance Flows
Glen Canyon Dam has altered ecological processes of the Colorado River in Grand Canyon. Before the dam was built, the Colorado River experienced seasonable variable flow rates, including springtime flooding events. These spring floods scoured the river bottom and enhanced natural processes that sustained the Colorado River ecosystem. Since the dam’s construction in 1963, springtime floods have...
Connectivity of Sand Resources Along the Colorado River in Grand Canyon
We study the links among different geomorphic processes that affect river valley landscapes in the Colorado River downstream from Glen Canyon Dam, Arizona. Dam-released flows affect the deposition and retention of sandbars that serve as sources for other sand resources, such as windblown sand dunes, throughout the Colorado River ecosystem.
Riparian Remote Sensing in the Colorado River and Grand Canyon Region
Riparian vegetation has increased dramatically along the Colorado River downstream of Glen Canyon Dam since the closure of the dam in 1963. The spatial patterns and temporal rates of vegetation increase occur due to changes in river hydrology, dam operations, and climate. The increase in vegetation, particularly onto otherwise bare sandbars, has impacted recreational, geomorphological, biological...
Combining terrestrial lidar with single line transects to investigate geomorphic change: A case study on the Upper Verde River, Arizona
The Upper Verde River in northern Arizona, USA is a vital resource for the wildlife and humans that rely on its waters. We characterize the riparian corridor topography using terrestrial laser scanner (TLS) data from 2021 to 2022. We also quantify geomorphic changes associated with human and climate-driven alterations in river flow and vegetation changes by combining the contemporary...
Authors
Lauren Lynn Tango, Temuulen Tsagaan Sankey, Jackson Leonard, Joel B. Sankey, Alan Kasprak
Forest fire, thinning, and flood in wildland-urban interface: UAV and lidar-based estimate of natural disaster impacts
ContextWildland-urban interface (WUI) areas are facing increased forest fire risks and extreme precipitation events due to climate change, which can lead to post-fire flood events. The city of Flagstaff in northern Arizona, USA experienced WUI forest thinning, fire, and record rainfall events, which collectively contributed to large floods and damages to the urban neighborhoods and city...
Authors
Temuulen Tsagaan Sankey, Lauren Lynn Tango, Julia Tatum, Joel B. Sankey
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.