Neil Kamal Ganju, PhD
My research spans the multiple disciplines that converge in estuarine systems. Research projects include numerical model development, field observations of hydrodynamics and water quality, wetland and coastal vulnerability assessments, geomorphic change, and eutrophication.
In 2001, I began working for the USGS at the California Water Science Center, on the San Francisco Bay Sediment Transport Project with Dr. David Schoellhamer. In 2008 I moved to the Woods Hole Coastal and Marine Science Center and began multiple projects throughout the northeast US. The Estuarine Processes, Hazards, and Ecosystems project, started in 2015, details the past and ongoing studies we are involved with.
Professional Experience
2010-present: Research Oceanographer, Woods Hole Coastal and Marine Science Center
2008-2010: Hydraulic Engineer, Woods Hole Coastal and Marine Science Center
2001-2008: Hydraulic Engineer, California Water Science Center
Education and Certifications
I studied civil engineering at the University of Michigan (BSCE), the University of Florida (MSCE), and the University of California-Davis (Ph.D.).
Science and Products
Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling
Summary of oceanographic and water–quality measurements in West Falmouth Harbor and Buzzards Bay, Massachusetts, 2009–2010 Summary of oceanographic and water–quality measurements in West Falmouth Harbor and Buzzards Bay, Massachusetts, 2009–2010
Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
A novel approach for direct estimation of fresh groundwater discharge to an estuary A novel approach for direct estimation of fresh groundwater discharge to an estuary
Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model
Discontinuous hindcast simulations of estuarine bathymetric change: A case study from Suisun Bay, California Discontinuous hindcast simulations of estuarine bathymetric change: A case study from Suisun Bay, California
Non-USGS Publications**
(2016), Estimating time-dependent
connectivity in marine systems, Geophys.
Res. Lett., 43, doi:10.1002/2015GL066888.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling
Summary of oceanographic and water–quality measurements in West Falmouth Harbor and Buzzards Bay, Massachusetts, 2009–2010 Summary of oceanographic and water–quality measurements in West Falmouth Harbor and Buzzards Bay, Massachusetts, 2009–2010
Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
A novel approach for direct estimation of fresh groundwater discharge to an estuary A novel approach for direct estimation of fresh groundwater discharge to an estuary
Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model
Discontinuous hindcast simulations of estuarine bathymetric change: A case study from Suisun Bay, California Discontinuous hindcast simulations of estuarine bathymetric change: A case study from Suisun Bay, California
Non-USGS Publications**
(2016), Estimating time-dependent
connectivity in marine systems, Geophys.
Res. Lett., 43, doi:10.1002/2015GL066888.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.