Skip to main content
U.S. flag

An official website of the United States government

Coastal and Marine Hazards and Resources Program

Coastal and Marine Hazards and Resources Program scientists and staff study coastal and ocean resources and processes from shorelines and estuaries to the continental shelf and deep sea.

News

link

Crowd-Sourcing Coastal Change Data Along Cliffs, Bluffs

link

How Watershed Processes Under Climate Change Will Shape Coastlines

link

USGS Coral Reef Science Featured in White House Report

Publications

Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center samples repository

Since 2002, the Woods Hole Coastal and Marine Science Center Samples Repository has been supporting U.S. Geological Survey research by providing secure storage for geological, geochemical, and biological samples, organizing and actively inventorying these sample collections, and providing researchers access to these scientific collections for study and reuse. Over the years, storage facilities ha

Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability

Evaluation of sea-level rise (SLR) impacts on coastal landforms and habitats is a persistent need for informing coastal planning and management, including policy decisions, particularly those that balance human interests and habitat protection throughout the coastal zone. Bayesian networks (BNs) are used to model barrier island change under different SLR scenarios that are relevant to management a

CoastalImageLib: An open-source Python package for creating common coastal image products

CoastalImageLib is a Python library that produces common coastal image products intended for quantitative analysis of coastal environments. This library contains functions to georectify and merge multiple oblique camera views, produce statistical image products for a given set of images, and create subsampled pixel instruments for use in bathymetric inversion, surface current estimation, run-up ca

Science

Delineating the U.S. Extended Continental Shelf

The United States has an interest in knowing the full extent of its continental shelf beyond 200 nautical miles from shore (called the extended continental shelf, or ECS) so that it can better protect, manage and use the resources of the seabed and subsoil contained therein. The USGS contributes to the ECS effort through membership and leadership on the interagency U.S. ECS Task Force, a group...
link

Delineating the U.S. Extended Continental Shelf

The United States has an interest in knowing the full extent of its continental shelf beyond 200 nautical miles from shore (called the extended continental shelf, or ECS) so that it can better protect, manage and use the resources of the seabed and subsoil contained therein. The USGS contributes to the ECS effort through membership and leadership on the interagency U.S. ECS Task Force, a group...
Learn More

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
link

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
Learn More

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
link

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Learn More