Peter M Powers, PhD
I am a research and development geophysicist specializing in probabilisitic seismic hazard analysis.
Science and Products
Filter Total Items: 13
Shakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014) Shakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014)
This is a catalog of earthquake scenarios, represented as ShakeMaps. A ShakeMap is a USGS product that facilitates communication of earthquake effects by portraying a map of the severity of shaking. Maps of shaking severity are provided in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and spectral accelerations (at 0.3, 1.0 and 3 sec oscillator periods)...
Filter Total Items: 38
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023 Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
As part of the U.S. National Seismic Hazard Model (NSHM) update planned for 2023, two databases were prepared to more completely represent Quaternary-active faulting across the western United States: the NSHM23 fault sections database (FSD) and earthquake geology database (EQGeoDB). In prior iterations of NSHM, fault sections were included only if a field-measurement-derived slip rate...
Authors
Alexandra Hatem, Camille Collett, Richard Briggs, Ryan Gold, Stephen Angster, Edward Field, Peter Powers
2021 U.S. National Seismic Hazard Model for the State of Hawaii 2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur D. Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor S. Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian Shiro
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US
The U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous U.S. NSHM includes significant changes to the underlying ground motion models (GMMs), most of which are necessary to enable the...
Authors
Peter Powers, Sanaz Rezaeian, Allison Shumway, Mark Petersen, Nico Luco, Oliver Boyd, Morgan Moschetti, Arthur Frankel, Eric Thompson
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US
The United States Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous US NSHM includes major changes to the underlying ground motion models (GMMs). Most of the changes are motivated by the...
Authors
Sanaz Rezaeian, Peter Powers, Allison Shumway, Mark Petersen, Nico Luco, Arthur Frankel, Morgan Moschetti, Eric Thompson, Daniel McNamara
The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
The 2018 update of the US National Seismic Hazard Model: Additional period and site class data The 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic...
Authors
Allison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon Clayton
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions
The selection and weighting of ground‐motion models (GMMs) introduces a significant source of uncertainty in U.S. Geological Survey (USGS) National Seismic Hazard Modeling Project (NSHMP) forecasts. In this study, we evaluate 18 candidate GMMs using instrumental ground‐motion observations of horizontal peak ground acceleration (PGA) and 5%‐damped pseudospectral acceleration (0.02–10 s)...
Authors
Daniel McNamara, Emily Wolin, Peter Powers, Allison Shumway, Morgan Moschetti, John Rekoske, Eric Thompson, Charles Mueller, Mark Petersen
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence
Instrumental ground‐motion recordings from the 2018 Anchorage, Alaska (Mw 7.1), earthquake sequence provide an independent data set allowing us to evaluate the predictive power of ground‐motion models (GMMs) for intraslab earthquakes associated with the Alaska subduction zone. In this study, we evaluate 15 candidate GMMs using instrumental ground‐motion observations of peak ground...
Authors
Daniel McNamara, Emily Wolin, Peter Powers, Allison Shumway, Morgan Moschetti, John Rekoske, Eric Thompson, Charles Mueller, Mark Petersen
The 2018 update of the US National Seismic Hazard Model: Overview of model and implications The 2018 update of the US National Seismic Hazard Model: Overview of model and implications
During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Charles Mueller, Morgan Moschetti, Arthur Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver Boyd, Kenneth Rukstales, Kishor Jaiswal, Eric Thompson, Susan Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
Ground-motion amplification in Cook Inlet region, Alaska from intermediate-depth earthquakes, including the 2018 MW=7.1 Anchorage earthquake Ground-motion amplification in Cook Inlet region, Alaska from intermediate-depth earthquakes, including the 2018 MW=7.1 Anchorage earthquake
We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5 s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction...
Authors
Morgan Moschetti, Eric Thompson, John Rekoske, Mike Hearne, Peter Powers, Daniel McNamara, Carl Tape
Evaluation of ground motion models for USGS seismic hazard forecasts: Induced and tectonic earthquakes in the Central and Eastern U.S. Evaluation of ground motion models for USGS seismic hazard forecasts: Induced and tectonic earthquakes in the Central and Eastern U.S.
Ground motion model (GMM) selection and weighting introduces a significant source of uncertainty in United States Geological Survey (USGS) seismic hazard models. The increase in moderate moment magnitude induced earthquakes (Mw 4 to 5.8) in Oklahoma and Kansas since 2009, due to increased wastewater injection related to oil and gas production (Keranen et al., 2013; 2014; Weingarten et al...
Authors
Daniel E. McNamara, Mark D. Petersen, Eric M. Thompson, Peter M. Powers, Allison Shumway, Susan M. Hoover, Morgan P. Moschetti, Emily Wolin
Preliminary 2018 national seismic hazard model for the conterminous United States Preliminary 2018 national seismic hazard model for the conterminous United States
The 2014 U.S. Geological Survey national seismic hazard model for the conterminous U.S. will be updated in 2018 and 2020 to coincide with the Building Seismic Safety Council’s Project 17 timeline for development of new building code design criteria. The two closely timed updates are planned to allow more time for the Provisions Update Committee to analyze the consequences of the hazard...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Charles Mueller, Sanaz Rezaeian, Morgan Moschetti, Daniel McNamara, Eric Thompson, Oliver Boyd, Nico Luco, Susan Hoover, Kenneth Rukstales
New USGS map shows where damaging earthquakes are most likely to occur in US New USGS map shows where damaging earthquakes are most likely to occur in US
USGS scientists and our partners recently revealed the latest National Seismic Hazard Model, showing that nearly 75% of the United States could experience a damaging earthquake, emphasizing seismic hazards span a significant part of the country.
Science and Products
Filter Total Items: 13
Shakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014) Shakemap earthquake scenario: Building Seismic Safety Council 2014 Event Set (BSSC2014)
This is a catalog of earthquake scenarios, represented as ShakeMaps. A ShakeMap is a USGS product that facilitates communication of earthquake effects by portraying a map of the severity of shaking. Maps of shaking severity are provided in terms of macroseismic intensity, peak ground acceleration, peak ground velocity, and spectral accelerations (at 0.3, 1.0 and 3 sec oscillator periods)...
Filter Total Items: 38
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023 Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
As part of the U.S. National Seismic Hazard Model (NSHM) update planned for 2023, two databases were prepared to more completely represent Quaternary-active faulting across the western United States: the NSHM23 fault sections database (FSD) and earthquake geology database (EQGeoDB). In prior iterations of NSHM, fault sections were included only if a field-measurement-derived slip rate...
Authors
Alexandra Hatem, Camille Collett, Richard Briggs, Ryan Gold, Stephen Angster, Edward Field, Peter Powers
2021 U.S. National Seismic Hazard Model for the State of Hawaii 2021 U.S. National Seismic Hazard Model for the State of Hawaii
The 2021 U.S. National Seismic Hazard Model (NSHM) for the State of Hawaii updates the two-decades-old former model by incorporating new data and modeling techniques to improve the underlying ground shaking forecasts of tectonic-fault, tectonic-flexure, volcanic, and caldera collapse earthquakes. Two earthquake ground shaking hazard models (public policy and research) are produced that...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Morgan P. Moschetti, Andrea L. Llenos, Andrew J. Michael, Charles Mueller, Arthur D. Frankel, Sanaz Rezaeian, Kenneth S. Rukstales, Daniel E. McNamara, P. Okubo, Yuehua Zeng, Kishor S. Jaiswal, Sean Kamran Ahdi, Jason M. Altekruse, Brian Shiro
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US The 2018 update of the US National Seismic Hazard Model: Ground motion models in the western US
The U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous U.S. NSHM includes significant changes to the underlying ground motion models (GMMs), most of which are necessary to enable the...
Authors
Peter Powers, Sanaz Rezaeian, Allison Shumway, Mark Petersen, Nico Luco, Oliver Boyd, Morgan Moschetti, Arthur Frankel, Eric Thompson
The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US The 2018 update of the US National Seismic Hazard Model: Ground motion models in the central and eastern US
The United States Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous US NSHM includes major changes to the underlying ground motion models (GMMs). Most of the changes are motivated by the...
Authors
Sanaz Rezaeian, Peter Powers, Allison Shumway, Mark Petersen, Nico Luco, Arthur Frankel, Morgan Moschetti, Eric Thompson, Daniel McNamara
The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed The 2018 update of the US National Seismic Hazard Model: Where, why, and how much probabilistic ground motion maps changed
The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two...
Authors
Mark D. Petersen, Allison Shumway, Peter M. Powers, Charles S Mueller, Morgan P. Moschetti, Arthur D. Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver S. Boyd, Kenneth S. Rukstales, Kishor S. Jaiswal, Eric M. Thompson, Susan M. Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
The 2018 update of the US National Seismic Hazard Model: Additional period and site class data The 2018 update of the US National Seismic Hazard Model: Additional period and site class data
As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic...
Authors
Allison Shumway, Mark D. Petersen, Peter M. Powers, Sanaz Rezaeian, Kenneth S. Rukstales, Brandon Clayton
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard forecasts: Hawaii tectonic earthquakes and volcanic eruptions
The selection and weighting of ground‐motion models (GMMs) introduces a significant source of uncertainty in U.S. Geological Survey (USGS) National Seismic Hazard Modeling Project (NSHMP) forecasts. In this study, we evaluate 18 candidate GMMs using instrumental ground‐motion observations of horizontal peak ground acceleration (PGA) and 5%‐damped pseudospectral acceleration (0.02–10 s)...
Authors
Daniel McNamara, Emily Wolin, Peter Powers, Allison Shumway, Morgan Moschetti, John Rekoske, Eric Thompson, Charles Mueller, Mark Petersen
Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence Evaluation of ground‐motion models for U.S. Geological Survey seismic hazard models: 2018 Anchorage, Alaska, Mw 7.1 subduction zone earthquake sequence
Instrumental ground‐motion recordings from the 2018 Anchorage, Alaska (Mw 7.1), earthquake sequence provide an independent data set allowing us to evaluate the predictive power of ground‐motion models (GMMs) for intraslab earthquakes associated with the Alaska subduction zone. In this study, we evaluate 15 candidate GMMs using instrumental ground‐motion observations of peak ground...
Authors
Daniel McNamara, Emily Wolin, Peter Powers, Allison Shumway, Morgan Moschetti, John Rekoske, Eric Thompson, Charles Mueller, Mark Petersen
The 2018 update of the US National Seismic Hazard Model: Overview of model and implications The 2018 update of the US National Seismic Hazard Model: Overview of model and implications
During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Charles Mueller, Morgan Moschetti, Arthur Frankel, Sanaz Rezaeian, Daniel McNamara, Nico Luco, Oliver Boyd, Kenneth Rukstales, Kishor Jaiswal, Eric Thompson, Susan Hoover, Brandon Clayton, Edward H. Field, Yuehua Zeng
Ground-motion amplification in Cook Inlet region, Alaska from intermediate-depth earthquakes, including the 2018 MW=7.1 Anchorage earthquake Ground-motion amplification in Cook Inlet region, Alaska from intermediate-depth earthquakes, including the 2018 MW=7.1 Anchorage earthquake
We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5 s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction...
Authors
Morgan Moschetti, Eric Thompson, John Rekoske, Mike Hearne, Peter Powers, Daniel McNamara, Carl Tape
Evaluation of ground motion models for USGS seismic hazard forecasts: Induced and tectonic earthquakes in the Central and Eastern U.S. Evaluation of ground motion models for USGS seismic hazard forecasts: Induced and tectonic earthquakes in the Central and Eastern U.S.
Ground motion model (GMM) selection and weighting introduces a significant source of uncertainty in United States Geological Survey (USGS) seismic hazard models. The increase in moderate moment magnitude induced earthquakes (Mw 4 to 5.8) in Oklahoma and Kansas since 2009, due to increased wastewater injection related to oil and gas production (Keranen et al., 2013; 2014; Weingarten et al...
Authors
Daniel E. McNamara, Mark D. Petersen, Eric M. Thompson, Peter M. Powers, Allison Shumway, Susan M. Hoover, Morgan P. Moschetti, Emily Wolin
Preliminary 2018 national seismic hazard model for the conterminous United States Preliminary 2018 national seismic hazard model for the conterminous United States
The 2014 U.S. Geological Survey national seismic hazard model for the conterminous U.S. will be updated in 2018 and 2020 to coincide with the Building Seismic Safety Council’s Project 17 timeline for development of new building code design criteria. The two closely timed updates are planned to allow more time for the Provisions Update Committee to analyze the consequences of the hazard...
Authors
Mark Petersen, Allison Shumway, Peter Powers, Charles Mueller, Sanaz Rezaeian, Morgan Moschetti, Daniel McNamara, Eric Thompson, Oliver Boyd, Nico Luco, Susan Hoover, Kenneth Rukstales
New USGS map shows where damaging earthquakes are most likely to occur in US New USGS map shows where damaging earthquakes are most likely to occur in US
USGS scientists and our partners recently revealed the latest National Seismic Hazard Model, showing that nearly 75% of the United States could experience a damaging earthquake, emphasizing seismic hazards span a significant part of the country.