Sean T. Brennan
Sean Brennan is a Research Geologist with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, VA.
Science and Products
Filter Total Items: 37
National assessment of geologic carbon dioxide storage resources: methodology implementation National assessment of geologic carbon dioxide storage resources: methodology implementation
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of...
Authors
Madalyn S. Blondes, Sean T. Brennan, Matthew D. Merrill, Marc L. Buursink, Peter D. Warwick, Steven M. Cahan, M.D. Corum, Troy A. Cook, William H. Craddock, Christina A. DeVera, Ronald M. Drake, Lawrence J. Drew, P.A. Freeman, Celeste D. Lohr, Ricardo A. Olea, Tina L. Roberts-Ashby, Ernie R. Slucher, Brian A. Varela
The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite
Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of...
Authors
Sean T. Brennan, Tim K. Lowenstein, Dioni I. Cendon
Methods to assess geological CO2 storage capacity: Status and best practice Methods to assess geological CO2 storage capacity: Status and best practice
To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of...
Authors
Wolf Heidug, Sean T. Brennan, Sam Holloway, Peter D. Warwick, Sean McCoy, Tsukasa Yoshimura
A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage
In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology...
Authors
Sean T. Brennan, Robert A. Burruss, Matthew D. Merrill, Philip A. Freeman, Leslie F. Ruppert
Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage
This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas...
Authors
Robert A. Burruss, Sean T. Brennan, Philip A. Freeman, Matthew D. Merrill, Leslie F. Ruppert, Mark F. Becker, William N. Herkelrath, Yousif K. Kharaka, Christopher E. Neuzil, Sharon M. Swanson, Troy A. Cook, Timothy R. Klett, Philip H. Nelson, Christopher J. Schenk
Timing of hydrocarbon emplacement in ozokerite andcalcite lined fractures, Teapot Dome, Wyoming Timing of hydrocarbon emplacement in ozokerite andcalcite lined fractures, Teapot Dome, Wyoming
Teapot Dome, Wyoming, also known as National Petroleum Reserve 3, is a candidate for a national CO2 storage test site. The oil field in Upper Cretaceous sandstones at Teapot Dome was discovered in the 1880's based on surface occurrences of a waxy hydrocarbon, 'ozokerite', within calcite-lined fractures. The goal of this research is to determine if the hydrocarbons resulted from active (i...
Authors
Sean T. Brennan, Kristin O. Dennen, Robert A. Burruss
Mineralogy and petrology of comet 81P/wild 2 nucleus samples Mineralogy and petrology of comet 81P/wild 2 nucleus samples
The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a...
Authors
M.E. Zolensky, T.J. Zega, H. Yano, S. Wirick, A.J. Westphal, M.K. Weisberg, I. Weber, J.L. Warren, M.A. Velbel, A. Tsuchiyama, P. Tsou, A. Toppani, N. Tomioka, K. Tomeoka, N. Teslich, M. Taheri, J. Susini, R. Stroud, T. Stephan, F.J. Stadermann, C.J. Snead, S.B. Simon, A. Simionovici, T.H. See, F. Robert, F.J.M. Rietmeijer, W. Rao, M.C. Perronnet, D.A. Papanastassiou, K. Okudaira, K. Ohsumi, I. Ohnishi, K. Nakamura-Messenger, T. Nakamura, S. Mostefaoui, T. Mikouchi, A. Meibom, G. Matrajt, M.A. Marcus, H. Leroux, L. Lemelle, L. Le, A. Lanzirotti, F. Langenhorst, A.N. Krot, L.P. Keller, A.T. Kearsley, D. Joswiak, D. Jacob, H. Ishii, R. Harvey, K. Hagiya, L. Grossman, J.H. Grossman, G.A. Graham, M. Gounalle, P. Gillet, M.J. Genge, G. Flynn, T. Ferroir, S. Fallon, D.S. Ebel, Z.R. Dai, P. Cordier, B. Clark, M. Chi, Anna L. Butterworth, D.E. Brownlee, J.C. Bridges, S. Brennan, A. Brearley, J.P. Bradley, P. Bleuet, P.A. Bland, R. Bastien
Comet 81P/wild 2 under a microscope Comet 81P/wild 2 under a microscope
The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger...
Authors
D. Brownlee, P. Tsou, J. Aleon, Alexander C. M. O’D, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, J. Borg, J.P. Bradley, A. Brearley, F. Brenker, S. Brennan, J.C. Bridges, N.D. Browning, J.R. Brucato, E. Bullock, M.J. Burchell, H. Busemann, Anna L. Butterworth, M. Chaussidon, A. Cheuvront, M. Chi, M.J. Cintala, B.C. Clark, S.J. Clemett, G. Cody, L. Colangeli, G. Cooper, P. Cordier, C. Daghlian, Z. Dai, L. D’Hendecourt, Z. Djouadi, G. Dominguez, T. Duxbury, J.P. Dworkin, D.S. Ebel, T.E. Economou, S. Fakra, S.A.J. Fairey, S. Fallon, G. Ferrini, T. Ferroir, H. Fleckenstein, C. Floss, G. Flynn, I.A. Franchi, M. Fries, Z. Gainsforth, J.-P. Gallien, M. Genge, M.K. Gilles, P. Gillet, J. Gilmour, D.P. Glavin, M. Gounelle, Monica M. Grady, G.A. Graham, P.G. Grant, S.F. Green, F. Grossemy, L. Grossman, J. N. Grossman, Y. Guan, K. Hagiya, R. Harvey, P. Heck, G.F. Herzog, P. Hoppe, F. Horz, J. Huth, I.D. Hutcheon, K. Ignatyev, H. Ishii, M. Ito, D. Jacob, C. Jacobsen, S. Jacobsen, S. Jones, D. Joswiak, A. Jurewicz, A.T. Kearsley, L.P. Keller, H. Khodja, A.L.D. Kilcoyne, J. Kissel, A. Krot, F. Langenhorst, A. Lanzirotti, L. Le, L.A. Leshin, J. Leitner, L. Lemelle, H. Leroux, M.-C. Liu, K. Luening, I. Lyon, G. MacPherson, M.A. Marcus, K. Marhas, B. Marty, G. Matrajt, K. McKeegan, A. Meibom, V. Mennella, K. Messenger, S. Messenger, T. Mikouchi, S. Mostefaoui, T. Nakamura, T. Nakano, M. Newville, L.R. Nittler, I. Ohnishi, K. Ohsumi, K. Okudaira, D.A. Papanastassiou, R. Palma, M.E. Palumbo, R. O. Pepin, D. Perkins, M. Perronnet, P. Pianetta, W. Rao, F.J.M. Rietmeijer, F. Robert, D. Rost, A. Rotundi, R. Ryan, S.A. Sandford, C.S. Schwandt, T.H. See, D. Schlutter, J. Sheffield-Parker, A. Simionovici, S. Simon, I. Sitnitsky, C.J. Snead, M. K. Spencer, F.J. Stadermann, A. Steele, T. Stephan
Specific storage volumes: A useful tool for CO2 storage capacity assessment Specific storage volumes: A useful tool for CO2 storage capacity assessment
Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative...
Authors
S.T. Brennan, R.C. Burruss
Seawater chemistry and the advent of biocalcification Seawater chemistry and the advent of biocalcification
Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the "Cambrian explosion," a brief drop in marine 87Sr/86Sr values, and an...
Authors
S.T. Brennan, T.K. Lowenstein, J. Horita
Geologic sequestration of carbon dioxide--An energy resource perspective Geologic sequestration of carbon dioxide--An energy resource perspective
No abstract available.
Authors
Robert A. Burruss, Sean T. Brennan
Specific sequestration volumes; a useful tool for CO2 storage capacity assessment Specific sequestration volumes; a useful tool for CO2 storage capacity assessment
No abstract available.
Authors
Sean T. Brennan, Robert A. Burruss
Science and Products
Filter Total Items: 37
National assessment of geologic carbon dioxide storage resources: methodology implementation National assessment of geologic carbon dioxide storage resources: methodology implementation
In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of...
Authors
Madalyn S. Blondes, Sean T. Brennan, Matthew D. Merrill, Marc L. Buursink, Peter D. Warwick, Steven M. Cahan, M.D. Corum, Troy A. Cook, William H. Craddock, Christina A. DeVera, Ronald M. Drake, Lawrence J. Drew, P.A. Freeman, Celeste D. Lohr, Ricardo A. Olea, Tina L. Roberts-Ashby, Ernie R. Slucher, Brian A. Varela
The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite
Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of...
Authors
Sean T. Brennan, Tim K. Lowenstein, Dioni I. Cendon
Methods to assess geological CO2 storage capacity: Status and best practice Methods to assess geological CO2 storage capacity: Status and best practice
To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of...
Authors
Wolf Heidug, Sean T. Brennan, Sam Holloway, Peter D. Warwick, Sean McCoy, Tsukasa Yoshimura
A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage
In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology...
Authors
Sean T. Brennan, Robert A. Burruss, Matthew D. Merrill, Philip A. Freeman, Leslie F. Ruppert
Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage Development of a probabilistic assessment methodology for evaluation of carbon dioxide storage
This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas...
Authors
Robert A. Burruss, Sean T. Brennan, Philip A. Freeman, Matthew D. Merrill, Leslie F. Ruppert, Mark F. Becker, William N. Herkelrath, Yousif K. Kharaka, Christopher E. Neuzil, Sharon M. Swanson, Troy A. Cook, Timothy R. Klett, Philip H. Nelson, Christopher J. Schenk
Timing of hydrocarbon emplacement in ozokerite andcalcite lined fractures, Teapot Dome, Wyoming Timing of hydrocarbon emplacement in ozokerite andcalcite lined fractures, Teapot Dome, Wyoming
Teapot Dome, Wyoming, also known as National Petroleum Reserve 3, is a candidate for a national CO2 storage test site. The oil field in Upper Cretaceous sandstones at Teapot Dome was discovered in the 1880's based on surface occurrences of a waxy hydrocarbon, 'ozokerite', within calcite-lined fractures. The goal of this research is to determine if the hydrocarbons resulted from active (i...
Authors
Sean T. Brennan, Kristin O. Dennen, Robert A. Burruss
Mineralogy and petrology of comet 81P/wild 2 nucleus samples Mineralogy and petrology of comet 81P/wild 2 nucleus samples
The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a...
Authors
M.E. Zolensky, T.J. Zega, H. Yano, S. Wirick, A.J. Westphal, M.K. Weisberg, I. Weber, J.L. Warren, M.A. Velbel, A. Tsuchiyama, P. Tsou, A. Toppani, N. Tomioka, K. Tomeoka, N. Teslich, M. Taheri, J. Susini, R. Stroud, T. Stephan, F.J. Stadermann, C.J. Snead, S.B. Simon, A. Simionovici, T.H. See, F. Robert, F.J.M. Rietmeijer, W. Rao, M.C. Perronnet, D.A. Papanastassiou, K. Okudaira, K. Ohsumi, I. Ohnishi, K. Nakamura-Messenger, T. Nakamura, S. Mostefaoui, T. Mikouchi, A. Meibom, G. Matrajt, M.A. Marcus, H. Leroux, L. Lemelle, L. Le, A. Lanzirotti, F. Langenhorst, A.N. Krot, L.P. Keller, A.T. Kearsley, D. Joswiak, D. Jacob, H. Ishii, R. Harvey, K. Hagiya, L. Grossman, J.H. Grossman, G.A. Graham, M. Gounalle, P. Gillet, M.J. Genge, G. Flynn, T. Ferroir, S. Fallon, D.S. Ebel, Z.R. Dai, P. Cordier, B. Clark, M. Chi, Anna L. Butterworth, D.E. Brownlee, J.C. Bridges, S. Brennan, A. Brearley, J.P. Bradley, P. Bleuet, P.A. Bland, R. Bastien
Comet 81P/wild 2 under a microscope Comet 81P/wild 2 under a microscope
The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger...
Authors
D. Brownlee, P. Tsou, J. Aleon, Alexander C. M. O’D, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, J. Borg, J.P. Bradley, A. Brearley, F. Brenker, S. Brennan, J.C. Bridges, N.D. Browning, J.R. Brucato, E. Bullock, M.J. Burchell, H. Busemann, Anna L. Butterworth, M. Chaussidon, A. Cheuvront, M. Chi, M.J. Cintala, B.C. Clark, S.J. Clemett, G. Cody, L. Colangeli, G. Cooper, P. Cordier, C. Daghlian, Z. Dai, L. D’Hendecourt, Z. Djouadi, G. Dominguez, T. Duxbury, J.P. Dworkin, D.S. Ebel, T.E. Economou, S. Fakra, S.A.J. Fairey, S. Fallon, G. Ferrini, T. Ferroir, H. Fleckenstein, C. Floss, G. Flynn, I.A. Franchi, M. Fries, Z. Gainsforth, J.-P. Gallien, M. Genge, M.K. Gilles, P. Gillet, J. Gilmour, D.P. Glavin, M. Gounelle, Monica M. Grady, G.A. Graham, P.G. Grant, S.F. Green, F. Grossemy, L. Grossman, J. N. Grossman, Y. Guan, K. Hagiya, R. Harvey, P. Heck, G.F. Herzog, P. Hoppe, F. Horz, J. Huth, I.D. Hutcheon, K. Ignatyev, H. Ishii, M. Ito, D. Jacob, C. Jacobsen, S. Jacobsen, S. Jones, D. Joswiak, A. Jurewicz, A.T. Kearsley, L.P. Keller, H. Khodja, A.L.D. Kilcoyne, J. Kissel, A. Krot, F. Langenhorst, A. Lanzirotti, L. Le, L.A. Leshin, J. Leitner, L. Lemelle, H. Leroux, M.-C. Liu, K. Luening, I. Lyon, G. MacPherson, M.A. Marcus, K. Marhas, B. Marty, G. Matrajt, K. McKeegan, A. Meibom, V. Mennella, K. Messenger, S. Messenger, T. Mikouchi, S. Mostefaoui, T. Nakamura, T. Nakano, M. Newville, L.R. Nittler, I. Ohnishi, K. Ohsumi, K. Okudaira, D.A. Papanastassiou, R. Palma, M.E. Palumbo, R. O. Pepin, D. Perkins, M. Perronnet, P. Pianetta, W. Rao, F.J.M. Rietmeijer, F. Robert, D. Rost, A. Rotundi, R. Ryan, S.A. Sandford, C.S. Schwandt, T.H. See, D. Schlutter, J. Sheffield-Parker, A. Simionovici, S. Simon, I. Sitnitsky, C.J. Snead, M. K. Spencer, F.J. Stadermann, A. Steele, T. Stephan
Specific storage volumes: A useful tool for CO2 storage capacity assessment Specific storage volumes: A useful tool for CO2 storage capacity assessment
Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative...
Authors
S.T. Brennan, R.C. Burruss
Seawater chemistry and the advent of biocalcification Seawater chemistry and the advent of biocalcification
Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the "Cambrian explosion," a brief drop in marine 87Sr/86Sr values, and an...
Authors
S.T. Brennan, T.K. Lowenstein, J. Horita
Geologic sequestration of carbon dioxide--An energy resource perspective Geologic sequestration of carbon dioxide--An energy resource perspective
No abstract available.
Authors
Robert A. Burruss, Sean T. Brennan
Specific sequestration volumes; a useful tool for CO2 storage capacity assessment Specific sequestration volumes; a useful tool for CO2 storage capacity assessment
No abstract available.
Authors
Sean T. Brennan, Robert A. Burruss