Skip to main content
U.S. flag

An official website of the United States government

Toxic Substances Hydrology

Science Centers and scientists supported by Toxic Substances Hydrology develop and apply advanced analytical methods, field investigations, laboratory studies, and modeling capabilities to understand sources, movement, and exposure pathways of chemical and microbial contaminants in the environment. They are integrated in the Ecosystems Mission Area as the Environmental Health Program.

News

link

Unintended consequences: New research shows all California condor flocks have been exposed to anticoagulant rodenticides

link

Explore Natural Hazards Science

link

New England WSC Expands Research on Per- and Polyfluoroalkyl Substances (PFAS)

Publications

Uptake of per- and polyfluoroalkyl substances by fish, mussel, and passive samplers in mobile laboratory exposures using groundwater from a contamination plume at a historical fire training area, Cape Cod, Massachusetts

Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments u
Authors
Larry Barber, Heidi M. Pickard, David Alvarez, Jitka Becanova, Steffanie H. Keefe, Denis R. LeBlanc, Rainer Lohmann, Jeffery Steevens, Alan M. Vajda

Acetylenotrophic and diazotrophic Bradyrhizobium sp. strain I71 from TCE-contaminated soils

AbstractAcetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known
Authors
Denise M. Akob, John M. Sutton, Timothy J. Bushman, Shaun Baesman, Edina Klein, Yesha Shrestha, Robert Andrews, Janna L. Fierst, Max Kolton, Sara Gushgari-Doyle, Ronald Oremland, John Freeman

Ecological consequences of neonicotinoid mixtures in streams

Neonicotinoid mixtures are common in streams worldwide, but corresponding ecological responses are poorly understood. We combined experimental and observational studies to narrow this knowledge gap. The mesocosm experiment determined that concentrations of the neonicotinoids imidacloprid and clothianidin (range of exposures, 0 to 11.9 μg/liter) above the hazard concentration for 5% of species (0.0
Authors
Travis S. Schmidt, Janet L. Miller, Barbara Mahler, Peter C. Van Metre, Lisa H. Nowell, Mark W. Sandstrom, Daren Carlisle, Patrick W. Moran, Paul Bradley

Science

Organic Contaminants in Reuse Waters and Transport Following Land Application

Potential reuse waters contained unique mixtures of organic contaminants with the greatest number detected in treated municipal wastewater treatment plant effluent, followed by urban stormwater, and agricultural runoff. This study provided information for decisions on reuse strategies to support freshwater supplies.
link

Organic Contaminants in Reuse Waters and Transport Following Land Application

Potential reuse waters contained unique mixtures of organic contaminants with the greatest number detected in treated municipal wastewater treatment plant effluent, followed by urban stormwater, and agricultural runoff. This study provided information for decisions on reuse strategies to support freshwater supplies.
Learn More

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
link

Per-and Polyfluoroalkyl Substances (PFAS) Integrated Science Team

Increasing scientific and public awareness of the widespread distribution of per- and poly-fluoroalkyl substances (PFAS) in U.S. drinking-water supplies, aquatic and terrestrial ecosystems, wildlife, and humans has raised many public health and resource management questions that U.S. Geological Survey's (USGS) science can inform. The USGS Environmental Health Program's PFAS Integrated Science Team...
Learn More

Pesticides Detected in Bees, Flowers, Soil, and Air within Pollinator-Attractive Row-Crop Border Plantings

Field study in California describes the potential for pollinator-attractive field borders in agricultural areas to become a pesticide exposure pathway to bees through soil, air, and plants.
link

Pesticides Detected in Bees, Flowers, Soil, and Air within Pollinator-Attractive Row-Crop Border Plantings

Field study in California describes the potential for pollinator-attractive field borders in agricultural areas to become a pesticide exposure pathway to bees through soil, air, and plants.
Learn More