Todd Ericksen
Todd Ericksen is a Geodetic Engineer in the Earthquake Science Center.
Science and Products
High-resolution seismic imaging data acquired in 2021 across a trace of the San Andreas Fault at Mee Ranch, Monterey County, California
In April of 2021, the U.S. Geological Survey conducted a high-resolution seismic survey at Mee Ranch in Monterey County, California. Both passive- and active-source seismic data were acquired using DTCC SmartSolo 3-component nodal seismograph systems ("nodes"), which continuously recorded data at rates up to 2000 samples per second. For passive-source acquisition, a 6x5 grid of nodes was deployed
Summary of Creepmeter Data from 1980 to 2020—Measurements Spanning the Hayward, Calaveras, and San Andreas Faults in Northern and Central California
This report is an update to the presentation by Schulz (1989) introducing potential users to the creepmeter data collected between the publication of Schulz’s report and mid-2020. The creepmeter network monitors aseismic, surface slip at various locations on the Hayward, Calaveras, and San Andreas Faults in northern and central California. There are different designs of creepmeters and these are b
Authors
John Langbein, Roger G. Bilham, Hollice A. Snyder, Todd Ericksen
Documentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
The MwMw 6.4 and MwMw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefully
Authors
Daniel J. Ponti, James Luke Blair, Rosa Carla M, Kate Thomas, Alexandra Pickering, Sinan Akciz, Stephen J. Angster, Jean-Philipe Avouac, Jeffrey Bachhuber, Steven Bacon, Nicolas C. Barth, S. Bennett, Kelly Blake, Stephan Bork, Benjamin A. Brooks, Thomas Bullard, Paul A. Burgess, Colin Chupik, Timothy E. Dawson, Michael DeFrisco, Jaime E. Delano, Stephen B. DeLong, James D. Dolan, Andrea Donnellan, Christopher DuRoss, Todd Ericksen, Erik Frost, Gareth J. Funning, Ryan D. Gold, Nicholas A Graehl, Carlos Gutierrez, Elizabeth Haddon, Alexandra Elise Hatem, John Helms, Janis Hernandez, Christopher S. Hitchcock, Peter Holland, Kenneth W. Hudnut, Katherine J. Kendrick, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Robert Leeper, Christopher Madugo, Maxime Mareschal, James McDonald, Devin McPhillips, Christopher Milliner, Daniel Mongovin, Alexander Morelan, Stephanie Nale, Johanna Nevitt, Matt O'Neal, Brian J. Olsen, Michael Oskin, Salena Padilla, Jason Patton, Belle E. Philibosian, Ian Pierce, Cynthia Pridmore, Nathaniel Roth, David Sandwell, Katherine M. Scharer, Gordon G. Seitz, Drake Singleton, Bridget Smith-Konter, Eleanor Spangler, Brian J. Swanson, Jessica Thompson Jobe, Jerome Treiman, Francesca Valencia, Joshua Vanderwal, Alana Williams, Xiaohua Xu, Judith Zachariasen, Jade Zimmerman, Robert Zinke
Mechanics of near-field deformation during co- and post-seismic shallow fault slip
Poor knowledge of how faults slip and distribute deformation in the shallow crust hinders efforts to mitigate hazards where faults increasingly intersect with the expanding global population at Earth’s surface. Here we analyze two study sites along the 2014 M 6.0 South Napa, California, earthquake rupture, each dominated by either co- or post-seismic shallow fault slip. We combine mobile laser sca
Authors
Johanna Nevitt, Benjamin A. Brooks, Rufus D. Catchings, Mark Goldman, Todd Ericksen, Craig L. Glennie
Illuminating subduction zone rheological properties in the wake of a giant earthquake
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surfa
Authors
Jonathan Weiss, Qiang Qiu, Sylvain Barbot, Tim J. Wright, James H. Foster, Alexander Saunders, Benjamin A. Brooks, Michael Bevis, Eric Kendrick, Todd Ericksen, Jonathan Avery, Robert Smalley, Sergio R. Cimbaro, Luis E. Lenzano, Jorge Barón, Juan Carlos Báez, Arturo Echalar
Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake sequence included a foreshock event on July 4 2019 (M6.4) and a M7.1 mainshock event on July 5 2019. These events occurred in the Eastern California Shear Zone, near Indian Wells Valley, south of China Lake and west of Searles Valley. GEER has partnered with several organizations to collect perishable data and document the important impacts of these events, including the
Authors
Scott J Brandenberg, Pengfei Wang, Chukwuebuka C Nweke, Kenneth Hudson, Silvia Mazzoni, Yousef Bozorgnia, Kenneth W. Hudnut, Craig A. Davis, Sean K Ahdi, Farzin Zareian, Jawad Fayaz, Richard D Koehler, Colin Chupik, Ian Pierce, Alana Williams, Sinan Akciz, Martin B Hudson, Tadahiro Kishida, Benjamin A. Brooks, Ryan D. Gold, Daniel J. Ponti, Katherine M. Scharer, Devin McPhillips, Christopher DuRoss, Todd Ericksen, Janis Hernandez, Jay Patton, Brian Olson, Timothy E. Dawson, Jerome Treiman, Kelly Blake, Jeffrey Buchhuber, Chris L M Madugo, Joseph Sun, Andrea Donnellan, Greg Lyzenga, Erik Conway
Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy
Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than
Authors
Benjamin A. Brooks, Sarah E. Minson, Craig L. Glennie, Johanna Nevitt, Timothy E. Dawson, Ron S. Rubin, Todd Ericksen, David A. Lockner, Kenneth W. Hudnut, Victoria E. Langenheim, Andrew Lutz, Jessica R. Murray, David P. Schwartz, Dana Zaccone
Science and Products
High-resolution seismic imaging data acquired in 2021 across a trace of the San Andreas Fault at Mee Ranch, Monterey County, California
In April of 2021, the U.S. Geological Survey conducted a high-resolution seismic survey at Mee Ranch in Monterey County, California. Both passive- and active-source seismic data were acquired using DTCC SmartSolo 3-component nodal seismograph systems ("nodes"), which continuously recorded data at rates up to 2000 samples per second. For passive-source acquisition, a 6x5 grid of nodes was deployed
Summary of Creepmeter Data from 1980 to 2020—Measurements Spanning the Hayward, Calaveras, and San Andreas Faults in Northern and Central California
This report is an update to the presentation by Schulz (1989) introducing potential users to the creepmeter data collected between the publication of Schulz’s report and mid-2020. The creepmeter network monitors aseismic, surface slip at various locations on the Hayward, Calaveras, and San Andreas Faults in northern and central California. There are different designs of creepmeters and these are b
Authors
John Langbein, Roger G. Bilham, Hollice A. Snyder, Todd Ericksen
Documentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
The MwMw 6.4 and MwMw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefully
Authors
Daniel J. Ponti, James Luke Blair, Rosa Carla M, Kate Thomas, Alexandra Pickering, Sinan Akciz, Stephen J. Angster, Jean-Philipe Avouac, Jeffrey Bachhuber, Steven Bacon, Nicolas C. Barth, S. Bennett, Kelly Blake, Stephan Bork, Benjamin A. Brooks, Thomas Bullard, Paul A. Burgess, Colin Chupik, Timothy E. Dawson, Michael DeFrisco, Jaime E. Delano, Stephen B. DeLong, James D. Dolan, Andrea Donnellan, Christopher DuRoss, Todd Ericksen, Erik Frost, Gareth J. Funning, Ryan D. Gold, Nicholas A Graehl, Carlos Gutierrez, Elizabeth Haddon, Alexandra Elise Hatem, John Helms, Janis Hernandez, Christopher S. Hitchcock, Peter Holland, Kenneth W. Hudnut, Katherine J. Kendrick, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Robert Leeper, Christopher Madugo, Maxime Mareschal, James McDonald, Devin McPhillips, Christopher Milliner, Daniel Mongovin, Alexander Morelan, Stephanie Nale, Johanna Nevitt, Matt O'Neal, Brian J. Olsen, Michael Oskin, Salena Padilla, Jason Patton, Belle E. Philibosian, Ian Pierce, Cynthia Pridmore, Nathaniel Roth, David Sandwell, Katherine M. Scharer, Gordon G. Seitz, Drake Singleton, Bridget Smith-Konter, Eleanor Spangler, Brian J. Swanson, Jessica Thompson Jobe, Jerome Treiman, Francesca Valencia, Joshua Vanderwal, Alana Williams, Xiaohua Xu, Judith Zachariasen, Jade Zimmerman, Robert Zinke
Mechanics of near-field deformation during co- and post-seismic shallow fault slip
Poor knowledge of how faults slip and distribute deformation in the shallow crust hinders efforts to mitigate hazards where faults increasingly intersect with the expanding global population at Earth’s surface. Here we analyze two study sites along the 2014 M 6.0 South Napa, California, earthquake rupture, each dominated by either co- or post-seismic shallow fault slip. We combine mobile laser sca
Authors
Johanna Nevitt, Benjamin A. Brooks, Rufus D. Catchings, Mark Goldman, Todd Ericksen, Craig L. Glennie
Illuminating subduction zone rheological properties in the wake of a giant earthquake
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surfa
Authors
Jonathan Weiss, Qiang Qiu, Sylvain Barbot, Tim J. Wright, James H. Foster, Alexander Saunders, Benjamin A. Brooks, Michael Bevis, Eric Kendrick, Todd Ericksen, Jonathan Avery, Robert Smalley, Sergio R. Cimbaro, Luis E. Lenzano, Jorge Barón, Juan Carlos Báez, Arturo Echalar
Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake sequence included a foreshock event on July 4 2019 (M6.4) and a M7.1 mainshock event on July 5 2019. These events occurred in the Eastern California Shear Zone, near Indian Wells Valley, south of China Lake and west of Searles Valley. GEER has partnered with several organizations to collect perishable data and document the important impacts of these events, including the
Authors
Scott J Brandenberg, Pengfei Wang, Chukwuebuka C Nweke, Kenneth Hudson, Silvia Mazzoni, Yousef Bozorgnia, Kenneth W. Hudnut, Craig A. Davis, Sean K Ahdi, Farzin Zareian, Jawad Fayaz, Richard D Koehler, Colin Chupik, Ian Pierce, Alana Williams, Sinan Akciz, Martin B Hudson, Tadahiro Kishida, Benjamin A. Brooks, Ryan D. Gold, Daniel J. Ponti, Katherine M. Scharer, Devin McPhillips, Christopher DuRoss, Todd Ericksen, Janis Hernandez, Jay Patton, Brian Olson, Timothy E. Dawson, Jerome Treiman, Kelly Blake, Jeffrey Buchhuber, Chris L M Madugo, Joseph Sun, Andrea Donnellan, Greg Lyzenga, Erik Conway
Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy
Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than
Authors
Benjamin A. Brooks, Sarah E. Minson, Craig L. Glennie, Johanna Nevitt, Timothy E. Dawson, Ron S. Rubin, Todd Ericksen, David A. Lockner, Kenneth W. Hudnut, Victoria E. Langenheim, Andrew Lutz, Jessica R. Murray, David P. Schwartz, Dana Zaccone