Zafer Defne, PhD
My research finds its form in providing answers to questions related to coasts and ocean, based on my knowledge of physical oceanography and experience in data sciences.
Dr. Zafer Defne received his PhD in Coastal and Ocean Engineering from Georgia Institute of Technology, with a minor in Information Technology Applications in Oceanography. His expertise includes computational fluid dynamics and data analysis. His work on numerical modeling of coastal ocean has been used to assess storm surge, residual circulation, sediment transport and water quality, as well as marine renewable energy. His recent research is on assessment of the physical state of coastal wetlands using geospatial data.
Google Scholar
Science and Products
Filter Total Items: 55
Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the...
Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in...
Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York
The salt marsh complex of Fire Island National Seashore (FIIS) and central Great South Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a...
Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in...
Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a...
Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U...
Filter Total Items: 26
Science and Products
Filter Total Items: 55
Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the...
Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in...
Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York
The salt marsh complex of Fire Island National Seashore (FIIS) and central Great South Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a...
Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in...
Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a...
Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia
Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U...
Filter Total Items: 26