Effects of acid-base chemistry on biology of streams in the Great Smoky Mountains National Park
Background
Watersheds of the Great Smoky Mountains National Park (GRSM) receive high levels of acid deposition resulting from atmospheric emissions of nitrogen and sulfur oxides. Acidic deposition has been shown to reduce acid neutralizing capacity (ANC) and calcium concentrations and increase acidity and aluminum concentrations in soils and surface waters and affect forest health as well as fish and macroinvertebrate assemblages across the GRSM. In fact, 12 streams on the Tennessee-side of the GRSM National Park are listed on the Clean Water Act’s 303d list of impaired surface waters for failing the pH standard (
- Source: USGS Sciencebase (id: 55df3803e4b0518e354e098b)
Background
Watersheds of the Great Smoky Mountains National Park (GRSM) receive high levels of acid deposition resulting from atmospheric emissions of nitrogen and sulfur oxides. Acidic deposition has been shown to reduce acid neutralizing capacity (ANC) and calcium concentrations and increase acidity and aluminum concentrations in soils and surface waters and affect forest health as well as fish and macroinvertebrate assemblages across the GRSM. In fact, 12 streams on the Tennessee-side of the GRSM National Park are listed on the Clean Water Act’s 303d list of impaired surface waters for failing the pH standard (
- Source: USGS Sciencebase (id: 55df3803e4b0518e354e098b)