Skip to main content
U.S. flag

An official website of the United States government

Wastewater

Wastewater is water that has been used by humans, and must be cleaned before it is released back into the environment. However, not all wastewater is treated to the same standards, and some wastewater, such as non-point runoff, isn't treated at all before returning to the environment. Browse studies about the effects of wastewater contamination below.

Filter Total Items: 3

Wastewater reuse may be detrimental to smallmouth bass abundance in the Shenandoah River Watershed

Issue: Municipal and industrial wastewater effluent is an important source of water for streams and rivers, especially during periods of low flow. The reuse of wastewater effluent may become even more important if climate change exacerbates low streamflow and drought conditions. However, wastewater effluent often contains chemicals that, when chronically present, can affect the health of aquatic...
Wastewater reuse may be detrimental to smallmouth bass abundance in the Shenandoah River Watershed

Wastewater reuse may be detrimental to smallmouth bass abundance in the Shenandoah River Watershed

Issue: Municipal and industrial wastewater effluent is an important source of water for streams and rivers, especially during periods of low flow. The reuse of wastewater effluent may become even more important if climate change exacerbates low streamflow and drought conditions. However, wastewater effluent often contains chemicals that, when chronically present, can affect the health of aquatic...
Learn More

Integrated Assessments of Potential Risks to Aquatic Organisms and Public Water Supply from Wastewater-Derived Chemical Mixtures in the Chesapeake Bay Watershed

Proper management of contaminants of emerging concern in the Chesapeake Bay region requires scientific efforts to understand the risk posed to aquatic resources from the “cocktail” of multiple contaminants that is often present. This research aims to assess the occurrence, sources, environmental impacts, biological effects, and the human health impacts of toxic contaminants in rivers.
Integrated Assessments of Potential Risks to Aquatic Organisms and Public Water Supply from Wastewater-Derived Chemical Mixtures in the Chesapeake Bay Watershed

Integrated Assessments of Potential Risks to Aquatic Organisms and Public Water Supply from Wastewater-Derived Chemical Mixtures in the Chesapeake Bay Watershed

Proper management of contaminants of emerging concern in the Chesapeake Bay region requires scientific efforts to understand the risk posed to aquatic resources from the “cocktail” of multiple contaminants that is often present. This research aims to assess the occurrence, sources, environmental impacts, biological effects, and the human health impacts of toxic contaminants in rivers.
Learn More

GIS-based landscape analysis to identify sources of endocrine disrupting chemicals

A key component to assessing the contaminant exposure pathways in streams and rivers of the Chesapeake Bay is using GIS-based landscape analysis to identify sources of endocrine disrupting chemicals. Municipal and industrial wastewater treatment plant (WWTP) discharges are potentially major sources of EDCs to streams, and therefore understanding the de facto wastewater reuse (represented as...
GIS-based landscape analysis to identify sources of endocrine disrupting chemicals

GIS-based landscape analysis to identify sources of endocrine disrupting chemicals

A key component to assessing the contaminant exposure pathways in streams and rivers of the Chesapeake Bay is using GIS-based landscape analysis to identify sources of endocrine disrupting chemicals. Municipal and industrial wastewater treatment plant (WWTP) discharges are potentially major sources of EDCs to streams, and therefore understanding the de facto wastewater reuse (represented as...
Learn More
Was this page helpful?