Bathymetric and Supporting Data for Various Water Supply Lakes in North-Central and West-Central Missouri, 2020
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface.
In June and July 2020, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and in collaboration with various cities in north- and west-central Missouri, completed bathymetric surveys of 12 lakes using a marine-based mobile mapping unit, which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Bathymetric data were collected as the vessel traversed longitudinal transects to provide nearly complete coverage of the lake. The MBES was electronically tilted in some areas to improve data collection along the shoreline, in coves, and in areas that are shallower than about 2.0 meters deep (the practical limit of reasonable and safe data collection with the MBES). At some lakes, supplemental data were collected in shallow areas using an acoustic Doppler current profiler (ADCP) mounted on a remote-controlled vessel equipped with a differential global positioning system (DGPS). Bathymetric quality-assurance data also were collected at each lake to evaluate the vertical accuracy of the gridded bathymetric point data from the MBES.
As part of the survey at each of these lakes, one or more reference marks or temporary bench marks were established to provide a point of known location and elevation from which the water surface could be measured or another survey could be referenced at a later date. In addition, the elevation of a primary spillway or intake was surveyed, when present. These points were surveyed using a real-time kinematic (RTK) Global Navigation Satellite System (GNSS) receiver connected to the Missouri Department of Transportation real-time network (RTN), which provided real-time survey-grade horizontal and vertical positioning, using field procedures as described in Rydlund and Densmore (2012) for a Level II real-time positioning survey.
Mozingo Lake and Maryville Reservoir were surveyed in June 2020 as part of the group of lakes surveyed in 2020. However, extraordinary interest in the bathymetry at Mozingo Lake by the city of Maryville necessitated these data being released earlier than the other 2020 lakes (Huizinga and others, 2021, 2022).
The MBES data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for each lake. These data also can be used to compare the current bathymetric surface with any previous bathymetric surface.
Data from each of the remaining 10 lakes surveyed in 2020 are provided in ESRI Shapefile format (ESRI, 2021). Each of the lakes surveyed in 2020 except Higginsville has a child page containing the metadata and two zip files, one for the bathymetric data, and the other for the bathymetric quality-assurance data. Data from the surveys at the Upper and Lower Higginsville Reservoirs are in two zip files on a single child page, one for the bathymetric data and one for the bathymetric quality assurance data of both lakes, and a single summary metadata file. The zip files follow the format of "####2020_bathy_pts.zip" or "####2020_QA_raw.zip," where "####" is the lake name. Each of these zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file.
The various reference marks and additional points from all the lake surveys are provided in ESRI Shapefile format (ESRI, 2021) with an attribute table on the main landing page. Attribute/column labels of this table are described in the "Entity and attribute" section of the metadata file.
References Cited:
Environmental Systems Research Institute, 2021, ArcGIS: accessed May 20, 2021, at https://www.esri.com/en-us/arcgis/about-arcgis/overview
Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., https://doi.org/10.3133/ofr20141005.
Huizinga, R.J., Oyler, L.D., and Rivers, B.C., 2022, Bathymetric contour maps, surface area and capacity tables, and bathymetric change maps for selected water-supply lakes in northwestern Missouri, 2019 and 2020: U.S. Geological Survey Scientific Investigations Map 3486, 12 sheets, includes 21-p. pamphlet, https://doi.org/10.3133/sim3486.
Huizinga R.J., Rivers, B.C., and Oyler, L.D., 2021, Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P92M53NJ.
Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, https://pubs.usgs.gov/of/2013/1101.
Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey: U.S. Geological Survey Techniques and Methods, book 11, chap. D1, 102 p. with appendixes, https://doi.org/10.3133/tm11D1.
Citation Information
Publication Year | 2023 |
---|---|
Title | Bathymetric and Supporting Data for Various Water Supply Lakes in North-Central and West-Central Missouri, 2020 |
DOI | 10.5066/P9BV1H0S |
Authors | Richard J Huizinga, Benjamin C Rivers |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Central Midwest Water Science Center |
Rights | This work is marked with CC0 1.0 Universal |