Projected coastal flooding extents and depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian, Mariana, and American Samoan Islands (ver. 2.0, September
February 13, 2024
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
Citation Information
Publication Year | 2024 |
---|---|
Title | Projected coastal flooding extents and depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian, Mariana, and American Samoan Islands (ver. 2.0, September |
DOI | 10.5066/P9RIQ7S7 |
Authors | Kristen C. Alkins, Camila (Contractor) Gaido Lasserre, Borja (Contractor) Gonzalez Reguero, Curt D. Storlazzi |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Pacific Coastal and Marine Science Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
Forecasting storm-induced coastal flooding for 21st century sea-level rise scenarios in the Hawaiian, Mariana, and American Samoan Islands
Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian, Mariana, and American Samoan Islands as a result of climate change and sea-level rise. We followed a hybrid (dynamical and statistical) downscaling approach to map flooding due to waves and storm surge at 10-square me
Authors
Curt D. Storlazzi, Borja G. Reguero, Camila Gaido L., Kristen C. Alkins, Chris Lowry, Cornelis M. Nederhoff, Li H. Erikson, Andrea C. O'Neill, Michael W. Beck
Kristen Alkins (Former Employee)
Physical Scientist
Physical Scientist
Curt Storlazzi, PhD
Research Geologist
Research Geologist
Email
Phone
Related
Forecasting storm-induced coastal flooding for 21st century sea-level rise scenarios in the Hawaiian, Mariana, and American Samoan Islands
Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian, Mariana, and American Samoan Islands as a result of climate change and sea-level rise. We followed a hybrid (dynamical and statistical) downscaling approach to map flooding due to waves and storm surge at 10-square me
Authors
Curt D. Storlazzi, Borja G. Reguero, Camila Gaido L., Kristen C. Alkins, Chris Lowry, Cornelis M. Nederhoff, Li H. Erikson, Andrea C. O'Neill, Michael W. Beck
Kristen Alkins (Former Employee)
Physical Scientist
Physical Scientist
Curt Storlazzi, PhD
Research Geologist
Research Geologist
Email
Phone