Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099
January 10, 2023
This data release provides output produced by a statistical, aridity threshold fire model for 11 extensively forested ecoregions in the western United States. We identified thresholds in fire-season climate water deficit (FSCWD) that distinguish years with limited, moderate, and extensive area burned for each ecoregion. We developed a new area burned model using these relationships and used it to simulate annual area burned using historical climate from 1980 - 2020 and output from global climate models (GCMs) from 1980 - 2099. The data release includes a comparison of mean annual FSCWD for 13 GCMs that we used to select five GCMs that bracket the range of conditions projected for the RCP 8.5 emissions scenario. We used the aridity thresholds to classify each simulation year as having limited, moderate, or extensive area burned and defined fire-size distributions from historical fire records for these categories. We simulated individual fires from a regression relating fire season aridity to the annual number of fires and drew fire sizes from the corresponding fire-size distributions. For each ecoregion, we produced 1000 replicate simulations of annual area burned (ha).
Citation Information
Publication Year | 2023 |
---|---|
Title | Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099 |
DOI | 10.5066/P9ERJ5Z4 |
Authors | Paul D Henne, Todd J Hawbaker |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Geosciences and Environmental Change Science Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts...
Authors
Paul D. Henne, Todd Hawbaker
Related
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts...
Authors
Paul D. Henne, Todd Hawbaker