Kīlauea Volcano is renowned for its relatively benign eruptions of fluid lava flows. Therefore, many people were surprised by the small explosions that occurred in Halema`uma`u Crater in 2008 and 2018, and even more surprised to learn that volcanic ash was being erupted from a new gas vent. However, ash emissions from Halema`uma`u Crater are part of the volcano's legacy.
Kīlauea's summit has erupted explosively throughout the history of the volcano, producing ash deposits that date back at least 30,000 years—and probably older.
In 1790, at least 80 people were killed in the Ka`ū Desert by searing hot gas and ash produced by a devastating explosion. In 1924, a series of steam explosions in Halema`uma`u Crater blasted columns of volcanic ash and dust as high as two miles (3 km) into the air. These plumes were blown downwind beyond the community of Pahala, 32 km (20 miles) away, where ash fallout turned day into night. Muddy ash also fell in lower Puna, making railroad tracks so slippery that trains couldn't travel in Maku`u. One person was killed near Halema`uma`u when he ventured too close to the vent and was hit by falling rocks.
On May 17 in 2018, an explosive eruption at the summit of Kilauea produced a volcanic cloud that reached as high as 30,000 feet above sea level.
Learn more:
Related Content
What gases are emitted by Kīlauea and other active volcanoes?
Ninety-nine percent of the gas molecules emitted during a volcanic eruption are water vapor (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The remaining one percent is comprised of small amounts of hydrogen sulfide, carbon monoxide, hydrogen chloride, hydrogen fluoride, and other minor gas species. Learn more: Volcanic gases can be harmful to health, vegetation and infrastructure
What is "vog"? How is it related to sulfur dioxide (SO2) emissions?
Vog (volcanic smog) is a visible haze comprised of gas and an aerosol of tiny particles and acidic droplets created when sulfur dioxide (SO2) and other gases emitted from a volcano chemically interact with sunlight and atmospheric oxygen, moisture, and dust. Volcanic gas emissions can pose environmental and health risks to nearby communities. Vog is a hazard that's associated with Hawaiian...
What health hazards are posed by vog (volcanic smog)?
Vog poses a health hazard by aggravating preexisting respiratory ailments. Sulfur dioxide (SO2) gas can irritate skin and the tissues and mucous membranes of the eyes, nose, and throat, and can penetrate airways, producing respiratory distress in some individuals. Aerosol particles in vog can also penetrate deep into human lungs and, at elevated levels, can induce symptoms of asthma. Physical...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
A decade of geodetic change at Kīlauea’s summit—Observations, interpretations, and unanswered questions from studies of the 2008–2018 Halemaʻumaʻu eruption
Views of a century of activity at Kīlauea Caldera—A visual essay
Groundwater dynamics at Kīlauea Volcano and vicinity, Hawaiʻi
Kīlauea’s 2008–2018 summit lava lake—Chronology and eruption insights
U.S. Geological Survey 2018 Kīlauea Volcano eruption response in Hawai'i—After-action review
Preliminary analyses of volcanic hazards at Kīlauea Volcano, Hawai‘i, 2017–2018
Living with volcano hazards
Undocumented late 18th- to early 19th-century volcanic eruptions in the Southwest Rift Zone of Kīlauea Volcano, Hawai‘i
2018 update to the U.S. Geological Survey national volcanic threat assessment
Characteristics of Hawaiian volcanoes
The first five years of Kīlauea’s summit eruption in Halema‘uma‘u Crater, 2008–2013
The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity
Related Content
- FAQ
What gases are emitted by Kīlauea and other active volcanoes?
Ninety-nine percent of the gas molecules emitted during a volcanic eruption are water vapor (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The remaining one percent is comprised of small amounts of hydrogen sulfide, carbon monoxide, hydrogen chloride, hydrogen fluoride, and other minor gas species. Learn more: Volcanic gases can be harmful to health, vegetation and infrastructure
What is "vog"? How is it related to sulfur dioxide (SO2) emissions?
Vog (volcanic smog) is a visible haze comprised of gas and an aerosol of tiny particles and acidic droplets created when sulfur dioxide (SO2) and other gases emitted from a volcano chemically interact with sunlight and atmospheric oxygen, moisture, and dust. Volcanic gas emissions can pose environmental and health risks to nearby communities. Vog is a hazard that's associated with Hawaiian...
What health hazards are posed by vog (volcanic smog)?
Vog poses a health hazard by aggravating preexisting respiratory ailments. Sulfur dioxide (SO2) gas can irritate skin and the tissues and mucous membranes of the eyes, nose, and throat, and can penetrate airways, producing respiratory distress in some individuals. Aerosol particles in vog can also penetrate deep into human lungs and, at elevated levels, can induce symptoms of asthma. Physical...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
- Multimedia
- Publications
Filter Total Items: 15
A decade of geodetic change at Kīlauea’s summit—Observations, interpretations, and unanswered questions from studies of the 2008–2018 Halemaʻumaʻu eruption
On March 19, 2008, a small explosion heralded the onset of an extraordinary eruption at the summit of Kīlauea Volcano. The following 10 years provided unprecedented access to an actively circulating lava lake located within a region monitored by numerous geodetic tools, including Global Navigation Satellite System (GNSS), interferometric synthetic aperture radar (InSAR), tilt, and gravity. These dAuthorsMichael P. Poland, Asta Miklius, Ingrid A. Johanson, Kyle R. AndersonViews of a century of activity at Kīlauea Caldera—A visual essay
The 2018 eruption of Kīlauea Volcano marked the end of the first sustained period of volcanic activity at Halemaʻumaʻu Crater in 94 years. The views of the lava lake (informally named “Overlook,” nestled within Halemaʻumaʻu) lasted for a decade and seemed timeless. But as we were recently reminded, the summit of Kīlauea is part of a dynamic system that has provided countless new views to observersAuthorsBen Gaddis, James P. KauahikauaGroundwater dynamics at Kīlauea Volcano and vicinity, Hawaiʻi
Kīlauea Volcano, on the Island of Hawaiʻi, is surrounded and permeated by active groundwater systems that interact dynamically with the volcanic system. A generalized conceptual model of Hawaiian hydrogeology includes high-level dike-impounded groundwater, very permeable perched and basal aquifers, and a transition (mixing) zone between freshwater and saltwater. Most high-level groundwater is assoAuthorsShaul Hurwitz, Sara E. Peek, Martha A. Scholl, Deborah Bergfeld, William C. Evans, James P. Kauahikaua, Stephen B. Gingerich, Paul A. Hsieh, R. Lopaka Lee, Edward F. Younger, Steven E. IngebritsenKīlauea’s 2008–2018 summit lava lake—Chronology and eruption insights
The first eruption at Kīlauea’s summit in 25 years began on March 19, 2008, and persisted for 10 years. The onset of the eruption marked the first explosive activity at the summit since 1924, forming the new “Overlook crater” (as the 2008 summit eruption crater has been informally named) within the existing crater of Halemaʻumaʻu. The first year consisted of sporadic lava activity deep within theAuthorsMatthew R. Patrick, Tim R. Orr, Don Swanson, Bruce F. Houghton, Kelly M. Wooten, Liliana Desmither, Carolyn Parcheta, David FeeU.S. Geological Survey 2018 Kīlauea Volcano eruption response in Hawai'i—After-action review
The 2018 Kīlauea Volcano eruption lasted 107 days, and now ranks as the most destructive event at Kilauea since 1790, and as one of the most costly volcanic disasters in U.S. history. Multiple simultaneous hazard events unfolded, including sustained seismic activity leading to collapse at the summit of Halema'uma'u crater and severe damage to the HVO facility, with additional eruption of lava in tAuthorsDee M. Williams, Vic F. Avery, Michelle L. Coombs, Dale A. Cox, Lief R. Horwitz, Sara K. McBride, Ryan J. McClymont, Seth C. MoranPreliminary analyses of volcanic hazards at Kīlauea Volcano, Hawai‘i, 2017–2018
From 2017 to 2018, the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) responded to ongoing and changing eruptions at Kīlauea Volcano as part of its mission to monitor volcanic processes, issue warnings of dangerous activity, and assess volcanic hazards. To formalize short-term hazards assessments—and, in some cases, issue prognoses for future activity—and make results discoverablAuthorsChristina A. Neal, Kyle R. AndersonLiving with volcano hazards
Volcanic eruptions are among Earth’s most dramatic and powerful agents of change. Ash, mudflows, and lava flows can devastate communities near volcanoes and cause havoc in areas far downwind, downstream, and downslope. Even when a volcano is quiet, steep volcanic slopes can collapse to become landslides, and large rocks can be hurled by powerful steam blasts. Hazardous volcanic conditions might laAuthorsWendy K. Stovall, Carolyn L. Driedger, Elizabeth G. Westby, Lisa M. FaustUndocumented late 18th- to early 19th-century volcanic eruptions in the Southwest Rift Zone of Kīlauea Volcano, Hawai‘i
The historical record of volcanic activity at Kīlauea Volcano on the Island of Hawaiʻi begins with the phreatomagmatic blasts of 1790. Three decades later, in 1823, the first party of non-Hawaiian visitors, organized by the English Reverend William Ellis, reached Kīlauea’s summit. A detailed narrative by Ellis includes an account of an eruption in Kīlauea’s Southwest Rift Zone that occurred shortlAuthorsRichard W. Hazlett, Tim R. Orr, Steve P. Lundblad2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This updateAuthorsJohn W. Ewert, Angela K. Diefenbach, David W. RamseyCharacteristics of Hawaiian volcanoes
Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptiThe first five years of Kīlauea’s summit eruption in Halema‘uma‘u Crater, 2008–2013
The eruption in Halema‘uma‘u Crater that began in March 2008 is the longest summit eruption of Kīlauea Volcano, on the Island of Hawai‘i, since 1924. From the time the eruption began, the new "Overlook crater" inside Halema‘uma‘u has exhibited fluctuating lava lake activity, occasional small explosive events, and a persistent gas plume. The beautiful nighttime glow impresses and thrills visitors iAuthorsMatthew R. Patrick, Tim R. Orr, A.J. Sutton, Tamar Elias, Donald A. SwansonThe ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity
The Puʻu ʻŌʻō eruption of Kīlauea Volcano is its longest rift-zone eruption in more than 500 years. Since the eruption began in 1983, lava flows have buried 48 square miles (125 square kilometers) of land and added about 500 acres (200 hectares) of new land to the Island of Hawaiʻi. The eruption not only challenges local communities, which must adapt to an ever-changing and sometimes-destructive eAuthorsTim R. Orr, Christina Heliker, Matthew R. Patrick - News