Reef History and Climate Change
Ecosystem-wide study of seafloor erosion, changing coastal water depths, and effects on coastal storm and wave impacts along the Florida Keys Coral Reef Tract in South Florida.
Corals as Paleo-environmental Archives
In order to better understand how the morphology and ecology of our coastal reefs has changed during the Holocene (past 10,000 years), we are analyzing coral skeletons to document past environmental changes and determine the relationships between the changing environment and coral growth. This information is critical to our understanding of the natural history of coral reefs and will provide clues to the future of reef accretion processes and climate change.
Scleractinian or "hard" corals deposit a skeleton of calcium carbonate (CaCO3), and serve as important geochemical archives for the reconstruction of paleo-environmental conditions on the reef. Mound corals are long-lived (100-300 years) and their skeletons have alternating light and dark layers that result from seasonal changes in growth rates. The couplets of light and dark layers represent annual bands, similar to tree rings, that can be used to determine the age of the coral skeleton. Variations in the chemical composition of the skeleton can be calibrated to environmental parameters such as seawater temperature, salinity, and pH as the coral grows.
Coral Geochemistry
In order to generate a time series of environmental variability, we drill a path of continuous samples along the growth axis of a coral using a computer driven triaxial micro-milling machine. This results in sub-annual sampling with 10-20 samples/year, depending on the coral linear extension rate. Using this approach we can reconstruct centuries-long records of seasonally resolved δ18O and Sr/Ca from long-lived Atlantic coral species such as Siderastraea siderea and Montastraea faveolata.
The Strontium to Calcium ratio (Sr/Ca) of the coral aragonite is related to the water temperature at which a coral calcifies. This is because Sr2+ and Ca2+ are both divalent cations with similar properties (they occupy the same column in the periodic table), so Sr2+ can substitute for Ca2+ in the CaCO3 of coral aragonite. As temperature increases, there is less Sr2+ substitution, and the Sr/Ca ratio decreases. The Sr/Ca to temperature relationship can differ between different species and different colonies of the same species of coral. We have empirically determined the Sr/Ca-temperature calibration equations for both M. faveolataand S. siderea in Dry Tortugas National Park, and applied those calibrations to time series covering the past 100-300 years.
The oxygen isotopic composition (δ18O) of coral aragonite is related to the temperature and the salinity of seawater. We are pairing Sr/Ca and δ18O measurements in corals to make inferences about past changes in temperature and salinity.
We are also exploring additional geochemical proxies in corals (e.g., B/Ca, Ba/Ca, δ11B, Li/Ca), which may tell us more about water nutrients, pH, salinity and temperature.
This research is part of the Coral Reef Ecosystem Studies (CREST) project. That project and other releated tasks are listed below.
Coral Reef Ecosystem Studies (CREST)
Holocene Coral-Reef Development
Coral Reef Seafloor Erosion and Coastal Hazards
Measuring Coral Growth to Help Restore Reefs
Below are publications associated with this project.
Fidelity of the Sr/Ca proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea
Multi-species coral Sr/Ca-based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits
The relationship between the ratio of strontium to calcium and sea-surface temperature in a modern Porites astreoides coral: Implications for using P. astreoides as a paleoclimate archive
A reconstruction of sea surface temperature variability in the southeastern Gulf of Mexico from 1734 to 2008 C.E. using cross-dated Sr/Ca records from the coral Siderastrea siderea
Sr/Ca proxy sea-surface temperature reconstructions from modern and holocene Montastraea faveolata specimens from the Dry Tortugas National Park
Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida
Holocene core logs and site methods for modern reef and head-coral cores - Dry Tortugas National Park, Florida
St. Petersburg Coastal and Marine Science Center's Core Archive Portal
Holocene core logs and site statistics for modern patch-reef cores: Biscayne National Park, Florida
Coral reefs, present and past, on the west Florida shelf and platform margin: Chapter 4
Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA
Utility of shallow-water ATRIS images in defining biogeologic processes and self-similarity in skeletal scleractinia, Florida reefs
Below are news stories associated with this project.
Ecosystem-wide study of seafloor erosion, changing coastal water depths, and effects on coastal storm and wave impacts along the Florida Keys Coral Reef Tract in South Florida.
Corals as Paleo-environmental Archives
In order to better understand how the morphology and ecology of our coastal reefs has changed during the Holocene (past 10,000 years), we are analyzing coral skeletons to document past environmental changes and determine the relationships between the changing environment and coral growth. This information is critical to our understanding of the natural history of coral reefs and will provide clues to the future of reef accretion processes and climate change.
Scleractinian or "hard" corals deposit a skeleton of calcium carbonate (CaCO3), and serve as important geochemical archives for the reconstruction of paleo-environmental conditions on the reef. Mound corals are long-lived (100-300 years) and their skeletons have alternating light and dark layers that result from seasonal changes in growth rates. The couplets of light and dark layers represent annual bands, similar to tree rings, that can be used to determine the age of the coral skeleton. Variations in the chemical composition of the skeleton can be calibrated to environmental parameters such as seawater temperature, salinity, and pH as the coral grows.
Coral Geochemistry
In order to generate a time series of environmental variability, we drill a path of continuous samples along the growth axis of a coral using a computer driven triaxial micro-milling machine. This results in sub-annual sampling with 10-20 samples/year, depending on the coral linear extension rate. Using this approach we can reconstruct centuries-long records of seasonally resolved δ18O and Sr/Ca from long-lived Atlantic coral species such as Siderastraea siderea and Montastraea faveolata.
The Strontium to Calcium ratio (Sr/Ca) of the coral aragonite is related to the water temperature at which a coral calcifies. This is because Sr2+ and Ca2+ are both divalent cations with similar properties (they occupy the same column in the periodic table), so Sr2+ can substitute for Ca2+ in the CaCO3 of coral aragonite. As temperature increases, there is less Sr2+ substitution, and the Sr/Ca ratio decreases. The Sr/Ca to temperature relationship can differ between different species and different colonies of the same species of coral. We have empirically determined the Sr/Ca-temperature calibration equations for both M. faveolataand S. siderea in Dry Tortugas National Park, and applied those calibrations to time series covering the past 100-300 years.
The oxygen isotopic composition (δ18O) of coral aragonite is related to the temperature and the salinity of seawater. We are pairing Sr/Ca and δ18O measurements in corals to make inferences about past changes in temperature and salinity.
We are also exploring additional geochemical proxies in corals (e.g., B/Ca, Ba/Ca, δ11B, Li/Ca), which may tell us more about water nutrients, pH, salinity and temperature.
This research is part of the Coral Reef Ecosystem Studies (CREST) project. That project and other releated tasks are listed below.
Coral Reef Ecosystem Studies (CREST)
Holocene Coral-Reef Development
Coral Reef Seafloor Erosion and Coastal Hazards
Measuring Coral Growth to Help Restore Reefs
Below are publications associated with this project.
Fidelity of the Sr/Ca proxy in recording ocean temperature in the western Atlantic coral Siderastrea siderea
Multi-species coral Sr/Ca-based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits
The relationship between the ratio of strontium to calcium and sea-surface temperature in a modern Porites astreoides coral: Implications for using P. astreoides as a paleoclimate archive
A reconstruction of sea surface temperature variability in the southeastern Gulf of Mexico from 1734 to 2008 C.E. using cross-dated Sr/Ca records from the coral Siderastrea siderea
Sr/Ca proxy sea-surface temperature reconstructions from modern and holocene Montastraea faveolata specimens from the Dry Tortugas National Park
Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida
Holocene core logs and site methods for modern reef and head-coral cores - Dry Tortugas National Park, Florida
St. Petersburg Coastal and Marine Science Center's Core Archive Portal
Holocene core logs and site statistics for modern patch-reef cores: Biscayne National Park, Florida
Coral reefs, present and past, on the west Florida shelf and platform margin: Chapter 4
Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA
Utility of shallow-water ATRIS images in defining biogeologic processes and self-similarity in skeletal scleractinia, Florida reefs
Below are news stories associated with this project.