Skip to main content
U.S. flag

An official website of the United States government

Watershed

Filter Total Items: 9

Life History and Migration of Sturgeons in New England Waters

Sturgeons appear in the fossil record as early as the Triassic, 200 million years ago. Although most populations could once tolerate harvesting pressures, most populations have collapsed and nearly all of the 28 species alive today are listed as threatened or endangered. In New England, dams and water regulation challenge population recoveries of the two resident species, the shortnose and...
Life History and Migration of Sturgeons in New England Waters

Life History and Migration of Sturgeons in New England Waters

Sturgeons appear in the fossil record as early as the Triassic, 200 million years ago. Although most populations could once tolerate harvesting pressures, most populations have collapsed and nearly all of the 28 species alive today are listed as threatened or endangered. In New England, dams and water regulation challenge population recoveries of the two resident species, the shortnose and...
Learn More

Fish Passage Design and Analysis at the S.O. Conte Research Laboratory

There are more than 92,000 dams in the United States, of which at least 3% of these produce hydropower. Hydropower projects create renewable energy but also can alter habitats, restrict upstream and downstream movements of fishes and other aquatic organisms, and may stress, injure or kill migrant fishes and other aquatic organisms. In addition, there are more than 5 million culverts and other road...
Fish Passage Design and Analysis at the S.O. Conte Research Laboratory

Fish Passage Design and Analysis at the S.O. Conte Research Laboratory

There are more than 92,000 dams in the United States, of which at least 3% of these produce hydropower. Hydropower projects create renewable energy but also can alter habitats, restrict upstream and downstream movements of fishes and other aquatic organisms, and may stress, injure or kill migrant fishes and other aquatic organisms. In addition, there are more than 5 million culverts and other road...
Learn More

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Learn More

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
Learn More

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
Water Quality Sampling in the Tributaries of the Long Island Sound

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
Learn More

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
Learn More

Surface Water Quality Monitoring in Connecticut

The 2,983 miles of streams in Connecticut support a range of uses, including drinking water, recreation, and fish and shellfish habitat. The State is required by the Clean Water Act to assess the health of these waters every two years.
Surface Water Quality Monitoring in Connecticut

Surface Water Quality Monitoring in Connecticut

The 2,983 miles of streams in Connecticut support a range of uses, including drinking water, recreation, and fish and shellfish habitat. The State is required by the Clean Water Act to assess the health of these waters every two years.
Learn More

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Learn More

Nutrient Loads from the Upper Connecticut River Watershed

River-borne nutrients, especially nitrogen, contribute to water-quality degradation in Long Island Sound. The Connecticut River is the largest tributary to the Sound, and quantification of nutrient loads from the three upper States in the watershed, as well as the State of Connecticut, is essential for prioritizing efforts to improve the Sound’s water quality.
Nutrient Loads from the Upper Connecticut River Watershed

Nutrient Loads from the Upper Connecticut River Watershed

River-borne nutrients, especially nitrogen, contribute to water-quality degradation in Long Island Sound. The Connecticut River is the largest tributary to the Sound, and quantification of nutrient loads from the three upper States in the watershed, as well as the State of Connecticut, is essential for prioritizing efforts to improve the Sound’s water quality.
Learn More
Was this page helpful?