Snowpack Futures: Developing Management Tools to Address Snow as a Water Resource and Hazard
Project Overview
Climate change has reduced the amount of water stored in snowpacks and altered avalanche risks in mountainous areas of western North America. Researchers supported by this North Central-CASC project will develop tools for predicting and managing future water resources and future avalanche patterns, particularly in areas of major transportation corridors and important habitats. Results from this project will help federal, tribal, and state agencies manage snow water resources and mitigate avalanche hazards across temporal and spatial scales.
Project Summary
Climate change is profoundly affecting seasonal snowpack, with implications for water resources and water-related hazards like avalanches. Since 1950, the amount of water stored in snowpacks in western North America has decreased substantially because of declining winter precipitation and earlier snowmelt. These climatic changes also affect the frequency and magnitude of snow avalanches, which are dangerous to people, infrastructure, and mountain ecosystems. However, predicting future water resources and avalanche frequency is a challenge, as previous research from this project team demonstrates that avalanches are driven by complex interactions between weather, climate, and snowpack structure.
This project has two distinct components related to snow as a water resource and a hazard. The first component addresses tribal partner needs for better tools for predicting and managing water resources and encompasses high-resolution snowpack data at a drainage scale. The second component focuses on snow as a hazard, addressing how changes to snowpack properties will impact future avalanche frequency and magnitude across the western United States. These research goals will help project team develop better tools for partners and stakeholders to address climate change impacts on snow and build more resilient communities.
Understanding future changes in snowpack properties and avalanche behavior, including a shift in avalanche regime from cold and dry to warm and wet, can help managers predict and adapt to new water storage and avalanche patterns. Results from this project will provide valuable data for federal, tribal, and state management of snow water resources and avalanche mitigation.
- Source: USGS Sciencebase (id: 6658a239d34ef3137d35f907)
Project Overview
Climate change has reduced the amount of water stored in snowpacks and altered avalanche risks in mountainous areas of western North America. Researchers supported by this North Central-CASC project will develop tools for predicting and managing future water resources and future avalanche patterns, particularly in areas of major transportation corridors and important habitats. Results from this project will help federal, tribal, and state agencies manage snow water resources and mitigate avalanche hazards across temporal and spatial scales.
Project Summary
Climate change is profoundly affecting seasonal snowpack, with implications for water resources and water-related hazards like avalanches. Since 1950, the amount of water stored in snowpacks in western North America has decreased substantially because of declining winter precipitation and earlier snowmelt. These climatic changes also affect the frequency and magnitude of snow avalanches, which are dangerous to people, infrastructure, and mountain ecosystems. However, predicting future water resources and avalanche frequency is a challenge, as previous research from this project team demonstrates that avalanches are driven by complex interactions between weather, climate, and snowpack structure.
This project has two distinct components related to snow as a water resource and a hazard. The first component addresses tribal partner needs for better tools for predicting and managing water resources and encompasses high-resolution snowpack data at a drainage scale. The second component focuses on snow as a hazard, addressing how changes to snowpack properties will impact future avalanche frequency and magnitude across the western United States. These research goals will help project team develop better tools for partners and stakeholders to address climate change impacts on snow and build more resilient communities.
Understanding future changes in snowpack properties and avalanche behavior, including a shift in avalanche regime from cold and dry to warm and wet, can help managers predict and adapt to new water storage and avalanche patterns. Results from this project will provide valuable data for federal, tribal, and state management of snow water resources and avalanche mitigation.
- Source: USGS Sciencebase (id: 6658a239d34ef3137d35f907)