Workshops and Collaborations to Improve Biodiversity and Climate Modeling
Completed
By Climate Adaptation Science Centers
December 31, 2015
As our world changes and communities are faced with uncertain future climate conditions, decision making and resource planning efforts can often no longer rely on historic scientific data alone. Scientific projections of what might be expected in the future are increasingly needed across the country and around the world. Scientists and researchers can develop these projections by using computer models to simulate complex elements of our climate and their interactions with ecosystems, wildlife, and biodiversity. While an extensive array of general circulation models (GCMs, climate models of the general circulation of the atmosphere and ocean) exist, there is currently a lack of global biodiversity models.
This project aims to bring together climate, ecosystem, and biodiversity modeling experts through a series of in-person workshops and virtual discussions to promote development of integrated approaches in modeling global biodiversity. The main goals of these workshops and discussions are to 1) identify lessons learned (both qualitative and quantitative) from climate models to then be applied to large-scale terrestrial biodiversity models, 2) to explore NASA and other remote sensing products to assist in global biodiversity and ecosystem models, and 3) to address and build on gaps and data needs (e.g., finer scale ecological and evolutionary processes) previously identified by the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) as necessary to inform the IPBES global biodiversity assessment.
This project aims to bring together climate, ecosystem, and biodiversity modeling experts through a series of in-person workshops and virtual discussions to promote development of integrated approaches in modeling global biodiversity. The main goals of these workshops and discussions are to 1) identify lessons learned (both qualitative and quantitative) from climate models to then be applied to large-scale terrestrial biodiversity models, 2) to explore NASA and other remote sensing products to assist in global biodiversity and ecosystem models, and 3) to address and build on gaps and data needs (e.g., finer scale ecological and evolutionary processes) previously identified by the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) as necessary to inform the IPBES global biodiversity assessment.
- Source: USGS Sciencebase (id: 587e8e94e4b0a765aab5eeca)
T. Douglas Beard, Jr., Ph.D.
Senior Administrator, National CASC
Senior Administrator, National CASC
Email
Phone
Stephen T Jackson, Ph.D. (Former Employee)
Senior Advisor on Biodiversity & Climate Change
Senior Advisor on Biodiversity & Climate Change
Sarah Weiskopf, Ph.D.
Research Ecologist, National CASC
Research Ecologist, National CASC
Email
Phone
As our world changes and communities are faced with uncertain future climate conditions, decision making and resource planning efforts can often no longer rely on historic scientific data alone. Scientific projections of what might be expected in the future are increasingly needed across the country and around the world. Scientists and researchers can develop these projections by using computer models to simulate complex elements of our climate and their interactions with ecosystems, wildlife, and biodiversity. While an extensive array of general circulation models (GCMs, climate models of the general circulation of the atmosphere and ocean) exist, there is currently a lack of global biodiversity models.
This project aims to bring together climate, ecosystem, and biodiversity modeling experts through a series of in-person workshops and virtual discussions to promote development of integrated approaches in modeling global biodiversity. The main goals of these workshops and discussions are to 1) identify lessons learned (both qualitative and quantitative) from climate models to then be applied to large-scale terrestrial biodiversity models, 2) to explore NASA and other remote sensing products to assist in global biodiversity and ecosystem models, and 3) to address and build on gaps and data needs (e.g., finer scale ecological and evolutionary processes) previously identified by the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) as necessary to inform the IPBES global biodiversity assessment.
This project aims to bring together climate, ecosystem, and biodiversity modeling experts through a series of in-person workshops and virtual discussions to promote development of integrated approaches in modeling global biodiversity. The main goals of these workshops and discussions are to 1) identify lessons learned (both qualitative and quantitative) from climate models to then be applied to large-scale terrestrial biodiversity models, 2) to explore NASA and other remote sensing products to assist in global biodiversity and ecosystem models, and 3) to address and build on gaps and data needs (e.g., finer scale ecological and evolutionary processes) previously identified by the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) as necessary to inform the IPBES global biodiversity assessment.
- Source: USGS Sciencebase (id: 587e8e94e4b0a765aab5eeca)
T. Douglas Beard, Jr., Ph.D.
Senior Administrator, National CASC
Senior Administrator, National CASC
Email
Phone
Stephen T Jackson, Ph.D. (Former Employee)
Senior Advisor on Biodiversity & Climate Change
Senior Advisor on Biodiversity & Climate Change
Sarah Weiskopf, Ph.D.
Research Ecologist, National CASC
Research Ecologist, National CASC
Email
Phone