The Stochastic Empirical Loading and Dilution Model (SELDM) was designed to help quantify the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. SELDM is calibrated using representative hydrological and water-quality input statistics. This report by the U.S. Geological Survey, in cooperation with the Federal Highway Administration and the Connecticut, Massachusetts, and Rhode Island Departments of Transportation, documents approaches for assessing flows, concentrations, and loads of highway- and urban-runoff and receiving-stream stormwater in southern New England with SELDM. In this report, the term “urban runoff” is used to identify stormwater flows from developed areas with impervious fractions ranging from 10 to 100 percent without regard to the U.S. Census Bureau designation for any given location. There are more than 48,000 delineated road-stream crossings in southern New England, but because there are relatively few precipitation, streamflow, and water-quality monitoring sites in this area, methods were needed to simulate conditions at unmonitored sites. This report documents simulation methods, methods for interpreting stochastic model results, sensitivity analyses to identify the most critical variables of concern, and examples demonstrating how simulation results can be used to inform scientific decision-making processes. Results of 7,511 SELDM simulations were used to do the sensitivity analyses and provide information decisionmakers can use to address runoff-quality issues in southern New England and other areas of the Nation.
The sensitivity analyses indicate the relatively strong effect of input variables on variations in output results. These analyses indicate that highway and urban runoff quality and upstream water-quality statistics that vary considerably from site to site have the greatest effect on simulated results. Further data are needed to improve available water-quality statistics, and because the number of monitored sites will never approach the number of sites of interest for water-quality management, research is needed to identify methods to select statistics for unmonitored sites and quantify the uncertainties in the selection process. Hydrologically, prestorm streamflows with and without zero flows are the most sensitive and therefore the most important hydrologic variables to quantify. Results of analyses also are sensitive to statistics used for simulating structural best management practices.
Although the focus of the report is on data, statistics, simulation methods, and methods to interpret stochastic simulations, the examples in this report provide results that can be used to inform scientific decision-making processes. The results of 441 simulations that provide regional and site-specific highway and urban runoff yields across southern New England can be used for total maximum daily load analyses. The example stormwater load analysis done for 16 tributaries of the Narragansett Bay demonstrates that highway nitrogen loads are a small fraction of stormwater loads (about 3.6 percent), and a much smaller fraction of all nitrogen loads to the bay, primarily because highways have a small footprint on the land. Examples evaluating the potential effectiveness of end-of-pipe treatment indicate that offsite treatment is warranted in developed areas, and land conservation may be an effective mitigation strategy. The results of these analyses are consistent with conclusions from other simulation and monitoring studies.
Citation Information
Publication Year | 2023 |
---|---|
Title | Approaches for assessing flows, concentrations, and loads of highway and urban runoff and receiving-stream stormwater in southern New England with the Stochastic Empirical Loading and Dilution Model (SELDM) |
DOI | 10.3133/sir20235087 |
Authors | Gregory E. Granato, Alana B. Spaetzel, Lillian C. Jeznach |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2023-5087 |
Index ID | sir20235087 |
Record Source | USGS Publications Warehouse |
USGS Organization | New England Water Science Center |
Related Content
Model Archive for Analysis of Flows, Concentrations, and Loads of Highway and Urban Runoff and Receiving-Stream Stormwater in Southern New England with the Stochastic Empirical Loading and Dilution Model (SELDM)
Model archive for Assessing long-term annual yields of highway and urban runoff in selected areas of California with the Stochastic Empirical Loading Dilution Model (SELDM)
Basin characteristics and point locations of road crossings in Connecticut, Massachusetts, and Rhode Island for highway-runoff mitigation analyses using the Stochastic Empirical Loading and Dilution Model
Model archive for analysis of the effects of impervious cover on receiving-water quality with the Stochastic Empirical Loading Dilution Model (SELDM)
Stochastic Empirical Loading and Dilution Model (SELDM) software archive
Best Management Practices Statistical Estimator (BMPSE) Version 1.2.0
Related Content
- Data
Model Archive for Analysis of Flows, Concentrations, and Loads of Highway and Urban Runoff and Receiving-Stream Stormwater in Southern New England with the Stochastic Empirical Loading and Dilution Model (SELDM)
This data release documents the data and models used to assess flows, concentrations, and loads of highway and urban runoff and of stormwater within receiving streams in southern New England. There are more than 48,000 locations in southern New England where roads cross streams and many more locations where runoff from developed areas may discharge to receiving streams; information about runoff diModel archive for Assessing long-term annual yields of highway and urban runoff in selected areas of California with the Stochastic Empirical Loading Dilution Model (SELDM)
Municipal Separate Storm Sewer System (MS4) permitees including the California Department of Transportation need information about potential loads and yields (loads per unit area) of constituents of concern in stormwater runoff. These entities also need information about the potential effectiveness of stormwater best management practices (BMPs) used to mitigate the effects of runoff. This informatBasin characteristics and point locations of road crossings in Connecticut, Massachusetts, and Rhode Island for highway-runoff mitigation analyses using the Stochastic Empirical Loading and Dilution Model
This data release documents the location of intersections between roads and streams, referred to as road crossings, and associated basin characteristics to support highway-runoff mitigation analyses using the Stochastic Empirical Loading and Dilution Model (SELDM, Granato, 2013) in Connecticut, Massachusetts, and Rhode Island. The data set of road crossings was generated from the intersections ofModel archive for analysis of the effects of impervious cover on receiving-water quality with the Stochastic Empirical Loading Dilution Model (SELDM)
Impervious runoff-discharge to receiving streams is widely recognized as one of the leading factors contributing to ecological degradation in such streams. Although there are many factors that contribute to ecological degradation with increasing development adverse effects caused by runoff quality is widely recognized as a contributing factor. The objective of this study was to simulate the flows - Software
Stochastic Empirical Loading and Dilution Model (SELDM) software archive
The Stochastic Empirical Loading and Dilution Model (SELDM) was developed by the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration (FHWA) Office of Project Delivery and Environmental Review to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures,Best Management Practices Statistical Estimator (BMPSE) Version 1.2.0
The Best Management Practices Statistical Estimator (BMPSE) was developed by the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration (FHWA) Office of Project Delivery and Environmental Review to provide planning-level information about the performance of structural best management practices for decision makers, planners, and highway engineers to assess and mitigat - Connect