Skip to main content
U.S. flag

An official website of the United States government

Arsenic, antimony, mercury, and water temperature in streams near Stibnite mining area, central Idaho, 2011–17

August 27, 2019

Mineralization and historical mining of stibnite (antimony sulfide), tungsten, gold, silver, and mercury in the headwaters of the East Fork of the South Fork Salmon River (EFSFSR) near the former town of Stibnite in central Idaho resulted in water-quality impairments related to mercury, antimony, and arsenic. Additionally, mining-related disturbances and wildfires have resulted in a lack of riparian shade in some areas, likely impacting water temperatures. In 2011, the U.S. Geological Survey, in cooperation with Midas Gold Corporation and the Idaho Department of Lands, began a study to characterize the spatial and temporal occurrence of trace metals to the EFSFSR. Five sites on the EFSFSR and its tributaries (Meadow and Sugar Creeks) were sampled about six times annually during 2011–17, during a range of streamflow conditions, for a total of 36–40 samples per location. Continuous water temperature, specific conductance, and streamflow also were measured at each site. The purpose of this report is to update previously reported information related to arsenic, antimony, mercury, and water temperature.

Concentrations of dissolved arsenic and antimony generally increased from upstream to downstream in the EFSFSR. At the upstream site, upstream of the Meadow Creek confluence, dissolved arsenic and antimony concentrations averaged 8.86 and 0.93 micrograms per liter (μg/L), respectively. Downstream, upstream from the Sugar Creek confluence, average dissolved concentrations increased to 56.5 and 27.9 μg/L, respectively. All samples from the downstream EFSFSR site exceeded the human-health based criterion for both dissolved arsenic (10 µg/L) and dissolved antimony (5.6 µg/L). The chronic aquatic life criterion for dissolved arsenic (150 μg/L) was not exceeded (the maximum sample concentration was 108 μg/L), and aquatic life criteria for antimony have not been established. The highest concentrations of both dissolved arsenic and dissolved antimony occurred during low-flow periods (July–March), suggesting the constituents are present in groundwater. In contrast, total mercury concentrations were highest during high-flow periods (April–June) and were particulate-associated, suggesting that mercury is present in surface materials. At Sugar Creek, where the highest total mercury concentrations were measured, 97 percent of samples exceeded the chronic aquatic life criterion (0.012 μg/L) and 11 percent exceeded the acute criterion (2.1 μg/L). At all sites, summertime water temperatures frequently exceeded criteria related to salmonid spawning.

Surrogate models previously developed to estimate continuous concentrations of arsenic, antimony, and mercury were reevaluated and updated, and the importance of explanatory variables on constituent concentrations is discussed. Results from this study can help guide future remediation locations and strategies, and provide a baseline against which future changes can be measured.

Publication Year 2019
Title Arsenic, antimony, mercury, and water temperature in streams near Stibnite mining area, central Idaho, 2011–17
DOI 10.3133/sir20195072
Authors Austin K. Baldwin, Alexandra B. Etheridge
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2019-5072
Index ID sir20195072
Record Source USGS Publications Warehouse
USGS Organization Idaho Water Science Center