Skip to main content
U.S. flag

An official website of the United States government

Evaluation of dissolved carbon dioxide to stimulate emergence of red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) from infested ponds

July 21, 2021

Invasive crayfish have adverse effects on habitats and native species. Control of invasive crayfish populations is a major challenge facing natural resource managers. This study evaluated the effectiveness and optimal conditions for the control agent carbon dioxide (CO2) which can be diffused into water to facilitate capture of red swamp crayfish (Procambarus clarkii; RSC). The efficacy of CO2 shows promise in its use for a variety of invasive aquatic species. Here, we evaluate CO2’s ability to stimulate movements towards the shoreline and/or induce complete terrestrial emergence from outdoor ponds. Twelve pond trials were conducted using three, 0.02-ha experimental ponds at Auburn University, Alabama, USA. Silt fencing was installed on dry land around the perimeter of each pond with the lower 0.3 m of fencing accordion-folded to provide shelter and a collection point for emerging crayfish. Each pond was stocked with 100 RSC before testing. Experimental treatment ponds were then injected with gaseous CO2 using porous air diffusers, whereas control ponds (C ponds) received no CO2. Multiple water quality parameters were monitored hourly. Three independent treatment scenarios with CO2 diffusion were: crayfish captured at the end of trial only (F: final), crayfish captured hourly (H: hourly), and incorporation of continuous inflow of fresh water at a flow rate of 0.2 L/s into the central catch basin to serve as a refuge with crayfish captured hourly (R: refuge). In control ponds, crayfish were captured at the end of trial only. In F ponds, CO2 diffusion for approximately five hours caused an average of 12% of total crayfish to emerge from the water. However, capture efficiency was increased to an average of 45% of total crayfish by increasing collection frequency to every hour and netting submerged crayfish near the water edge in addition to capturing terrestrially emerged crayfish. Presence of a freshwater inflow reduced capture efficiency in R ponds relative to H ponds. Odds of capturing crayfish improved with increased water temperature, increased CO2 concentration and increased crayfish mass. Based on results, we provide a set of predictive equations as well as interactive calculators to help natural resource managers explore several environmental and treatment-related scenarios that predict changes in capture probability in small research ponds. Carbon dioxide shows promises as a tool to increase capture rate of RSC. It is not likely to be 100% effective by itself, but could be a useful component of an integrated management strategy.

Citation Information

Publication Year 2021
Title Evaluation of dissolved carbon dioxide to stimulate emergence of red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) from infested ponds
DOI 10.3391/mbi.2021.12.4.11
Authors Hisham Abdelrahman, Rebecca Gibson, Kaelyn Fogelman, Aaron R. Cupp, Ann Allert, James Stoeckel
Publication Type Article
Publication Subtype Journal Article
Series Title Management of Biological Invasions
Series Number
Index ID 70226572
Record Source USGS Publications Warehouse
USGS Organization Columbia Environmental Research Center