Skip to main content
U.S. flag

An official website of the United States government

Fishway Entrance Palisade

February 14, 2022

This technical report summarizes the work that was conducted by the University of Massachusetts Amherst and the United States Geological Survey (USGS), along with other project partners, on the Fishway Entrance Palisade (EP), a projected funded through the Department of Energy’s (DOE) funding opportunity titled ‘Innovative Solutions for Fish Passage at Hydropower Dams’ (DE‐FOA‐0001662). The period of performance ranged from September 1, 2018 through September 30, 2021.

The EP is a novel fish passage engineering technology designed to provide more favorable entry conditions for fish and to reduce costs relative to conventional fishway auxiliary water systems (AWS). The EP project has four primary components.

First, the Northeast United States Auxiliary Water Systems Database was created (Northeast Fishway Auxiliary Water Systems Database Section). The database, developed with material provided by the U.S. Fish and Wildlife Service, contains information on fishway type (e.g., lift, Denil, pool and weir) and Auxiliary Water System (AWS) details (e.g., water conveyance method, diffuser type) for 60 hydroelectric sites in the region. Findings indicate that nearly 4 out of every 10 fishway in the region is a fish lift and approximately 1 out of every 4 is a Denil ladder. The remainder are a mix of vertical slot fishways, pool and weirs, and Ice Harbor fishways. Furthermore, over half of all AWS systems use floor diffusers to discharge the auxiliary (or attraction) water into the entrance of a fishway, whereas only 14% use wall diffusers.

Second, limited experiments on a conventional AWS with live, actively migrating fish were conducted at the USGS Easter Ecological Science Center (EESC) S.O. Conte Research Laboratory (Conventional Auxiliary Water System Experiments Section). This study determined how water velocity through a wall diffuser, without turning vanes or timber baffles to distribute the flow, affects the behavior and passage of adult American shad, a conservative surrogate species for migratory fish on the East Coast. Two gross diffuser velocity treatments were examined, 0.5 ft/s and 1.0 ft/s. These wall diffuser velocities represented current (0.5 ft/s) and past (1.0 ft/s) design criteria guidelines set forth by the USFWS North Atlantic-Appalachian Region (Rojas 2020; USFWS 2019). Six trials with a total of 151 American Shad were conducted in June of 2019 for the two treatments.

No differences in American shad passage efficiency were discovered between the two treatments, while approximately 3 in every 4 attempts were successful at passing the diffuser. While these results may appear to indicate that the generally accepted gross wall diffuser velocity criteria for American shad of 0.5 ft/s could be safely increased to 1.0 ft/s, further analysis is warranted. Furthermore, it is unknown how other migratory and resident fish species that traverse these structures would be impacted by such a change.

Studying the wall diffuser hydraulics led to an important AWS observation. Without turning vanes or timber baffles in this study, doubling the diffuser area was insufficient at producing the type of flow field change one may expect by halving the gross diffuser velocity. Instead, the flow fields throughout each treatments study area were similar, which led to similar results in shad performance. This not only highlights the importance of installing flow guidance devices like turning vanes, but also to the importance of properly maintaining them, which can be costly.

Third, more expansive experiments on the novel EP were conducted in the spring of 2019 and 2021 (Fishway Entrance Palisade Experiments). The goal of this study was to determine how adult American shad responded to a variety of conditions at a full-scale EP. A total of six treatments were examined by changing the average auxiliary channel velocity between 1.0 and 5.0 ft/s in intervals of 1.0 ft/s and by inserting/removing an entrance gate at the opening of the fishway. Thirty trials with a total of 1,273 shad were conducted over the two years.

In all treatments, at least ~7 out of every 10 fish successfully passed the EP diffuser and swam into the entrance channel within the 3.5-hour long trial, highlighting the general effectiveness of the novel AWS technology. In both study years, lower velocities through the EP diffuser led to increased shad performance, though performance peaked for the 2 ft/s velocity treatment. This treatment condition represents an approximate six-fold increase in gross diffuser velocity relative to conventional auxiliary water systems, which in turn presents opportunities for cost savings (e.g., reduction in diffuser size).

Shad performance, in general, was worse in 2019 than in 2021, potentially due to the different run timing when our trials were conducted (2019 trials occurred near the end of the migration season, unlike in 2021). Treatments in 2019 had approximately a 20% reduction in entrance efficiency by the trial end, including a 16.7% drop for the 3 ft/s velocity treatment in 2019 relative to 2021 (the only carryover treatment between years).

Lastly, adding an entrance gate caused a significant delay to entry. The time to 25% entry raised ~20 minutes from the near instantaneous 25% entry that was reported for the other treatments conducted in the same year (2021). Though by the end of the 3.5-hour trial, the overall entrance efficiency nearly matched those of the other 2021 treatments.

The fourth and final component of the EP project was an economic analysis that focused on the cost of attraction and environmental flows (Modeling Power Generation Losses Due to Environmental and Fish Passage Attraction Flows at a Run-Of-River Hydroelectric Operation in the Northeast). The study assessed the economic impact of meeting environmental flow requirements at a representative hydroelectric facility and fish lift in the Northeast. An initial finding of the study was that there is a paucity of published data on the costs of meeting attraction and environmental flows. This is due, in part, to the proprietary nature of this data. To explore the costs associated with these flows, three types of environmental flows were assessed: upstream fishway attraction flows, downstream fishway attraction flows, and habitat maintenance minimum flows. A physics-based model was developed and calibrated with three years of hourly generation and flow data as inputs. Gage flow inputs were adjusted and used to calculate power generated. To address hydrologic variability, the model was executed to simulate 30 years of historical flows.

Results indicate that both interannual and seasonal climatic factors impact the costs of meeting environmental flow requirements. Generation potential is most strongly curtailed during dry years in terms of maximizing the capacity factor (the percent of time a plant generates at capacity). Dry years, and especially dry summers, have the most significant costs associated with mitigation flows. Of the three types of flows, habitat flows are most costly in terms of power production, followed by upstream attraction flows. Downstream attraction flows are least costly. This finding is the likely result of differences in both flow rates and duration of the seasonal requirement for each flow. Overall, environmental flows represented a 2-12% loss in annual generation, but losses during a dry summer can reach over 20%.

Citation Information

Publication Year 2022
Title Fishway Entrance Palisade
DOI 10.2172/1905243
Authors Kevin Mulligan, Richard Palmer, Brett Towler, Alexander Haro, Bjorn Lake, Marcia Rojas, Elizabeth Lotter
Publication Type Report
Publication Subtype Federal Government Series
Series Title Final Technical Report
Index ID 70238946
Record Source USGS Publications Warehouse
USGS Organization Eastern Ecological Science Center