Skip to main content
U.S. flag

An official website of the United States government

Groundwater hydrology, groundwater and surface-water interactions, aquifer testing, and groundwater-flow simulations for the Fountain Creek alluvial aquifer, near Colorado Springs, Colorado, 2018–20

April 3, 2024

From 2018 through 2020, the U.S. Geological Survey, in cooperation with the Air Force Civil Engineering Center, conducted an integrated study of the Fountain Creek alluvial aquifer located near Colorado Springs, Colorado. The objective of the study was to characterize hydrologic conditions for the alluvial aquifer pertinent to the potential for transport of solutes. Specific goals of this report were to characterize the groundwater hydrology of the area, to quantify groundwater and surface-water interactions, to estimate hydraulic properties of the aquifer using aquifer testing, and to complete numerical simulations of groundwater flow.

Synoptic groundwater-level elevation measurements completed throughout this study, and as part of other U.S. Geological Survey programs between 1994 and 2020, indicate groundwater-level elevations fluctuate on annual and interannual timeframes. Groundwater-level fluctuations likely were caused by temporally variable groundwater recharge and discharge components in the area, with many wells showing maximum groundwater-level elevations during the winter months (November through March). From an interannual perspective, groundwater-level fluctuations appear to have reached maximum values during 2000 to 2003, decreased during 2003 to 2006, and remained relatively constant since that time, with the exception of several wells which have displayed rising groundwater-level elevations since 2018. Spatial evaluation of groundwater-level elevations indicates groundwater flow is generally from northeast to southwest within the vicinity of several alluvial paleochannels occurring along the northeastern margin of the aquifer. Within the center of the aquifer along Fountain Creek, groundwater flow is generally from north to south, approximately paralleling surface-water flow. To quantitatively understand the potential effect of groundwater recharge and groundwater pumping on fluctuations in groundwater-level elevation, a statistical transfer-function-noise model was applied. Results of the statistical model indicate throughout most of the aquifer, fluctuations were primarily the result of recharge seasonality. In the main stem of the aquifer where groundwater pumping wells were more concentrated, however, groundwater-level elevation fluctuations were also attributable to groundwater pumping through time.

Three-dimensional evaluation of the aquifer geometry near Fountain Creek was combined with synoptic streamflow measurement and accounting of stream gains and losses to evaluate groundwater and surface-water interactions in the study area. Streamflow gain or loss calculations indicate Fountain Creek both gains from and loses flow to the alluvial aquifer, and gaining or losing reaches of the stream may be partially controlled by the depth to bedrock near the stream. Reaches with streamflow gains tend to coincide with areas where the estimated depth to bedrock is decreasing, meaning the alluvial aquifer is likely thinning in these areas and groundwater-flow paths may be converging and discharging groundwater to the stream. Losing reaches tended to coincide with locally greater depth to bedrock where the alluvial aquifer is likely thicker and has greater storage potential for surface water lost from Fountain Creek.

Results of aquifer testing indicate hydraulic conductivity, estimated from slug tests and single-well pumping tests, ranged from 0.32 to 1,410 feet per day (ft/d) and 4.13 to 664 ft/d, respectively. These results are similar to the range of values from previous aquifer tests in the study area. Hydraulic conductivities from aquifer testing for this study were generally greater than the estimates of previous slug tests and had a mean value less than the estimates from previous pumping tests. Spatial evaluation of aquifer testing results indicates hydraulic conductivity tends to be greater in the main stem of the alluvial aquifer and lower in paleochannels upgradient from the main stem of the aquifer. The spatial variation in hydraulic conductivity may be attributed to the geomorphologic processes that formed the alluvial aquifer. Compacted sediment in the paleochannels has not been potentially transported sufficient distance to cause grain-size sorting, resulting in a poorly sorted deposit and lower hydraulic conductivities. In the central portion of the alluvial aquifer, near Fountain Creek, the sediments have been transported farther from their source areas and are likely better sorted, removing finer grained sediments that would cause lower hydraulic conductivity.

A numerical groundwater-flow model was calibrated for the Fountain Creek alluvial aquifer for 2000–19 to simulate water-budget components, groundwater-flow directions, and groundwater-flow paths. The model simulated precipitation recharge, groundwater and surface-water interactions, evapotranspiration, high-volume groundwater pumping by pumping wells, and external inflows and outflows occurring along the boundaries of the alluvial aquifer. Model calibration was completed using manual and automated approaches, the latter of which assisted in quantifying model results sensitivity to input parameters. The calibrated model corresponds well with groundwater-level elevation observations, with a mean residual (observed minus simulated groundwater-level elevation) equal to −0.60 feet. Simulated groundwater base flow to streams was typically within 10 percent of base flow estimated by independent methods. Groundwater and surface-water interactions represented the largest water-budget components of the aquifer, with the second largest groundwater discharge component coming from pumping wells. Groundwater and surface-water interactions represent both the largest gain and loss terms in the water budget, because these interactions differ spatially, meaning in some areas of the model domain groundwater is being recharged by streams, whereas in other areas, groundwater is discharged to streams. Estimates of advective groundwater-flow paths indicate pumping wells may capture groundwater recharged from losing streams and groundwater that flows into the main stem of the alluvial aquifer from paleochannels.

Publication Year 2024
Title Groundwater hydrology, groundwater and surface-water interactions, aquifer testing, and groundwater-flow simulations for the Fountain Creek alluvial aquifer, near Colorado Springs, Colorado, 2018–20
DOI 10.3133/sir20235119
Authors Connor P. Newman, Cory A. Russell, Zachary D. Kisfalusi, Suzanne Paschke
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2023-5119
Index ID sir20235119
Record Source USGS Publications Warehouse
USGS Organization Colorado Water Science Center