Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado
Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements.
Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam.
The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines.
Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's.
Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Citation Information
Publication Year | 2001 |
---|---|
Title | Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado |
DOI | 10.3133/wri20014022 |
Authors | Adrienne I. Greve, Norman E. Spahr, Peter C. Van Metre, Jennifer T. Wilson |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Water-Resources Investigations Report |
Series Number | 2001-4022 |
Index ID | wri20014022 |
Record Source | USGS Publications Warehouse |
USGS Organization | Colorado Water Science Center; National Water Quality Assessment Program |