Skip to main content
U.S. flag

An official website of the United States government

Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling

January 1, 2012

The Lake Bosumtwi sediment record represents one of the longest and highest-resolution terrestrial records of paleoclimate change available from sub-Saharan Africa. Here we report a new sediment age model framework for the last ~ 45 cal kyr of sedimentation using a combination of high-resolution radiocarbon dating, Bayesian age-depth modeling and lamination counting. Our results highlight the practical limits of these methods for reducing age model uncertainties and suggest that even with very high sampling densities, radiocarbon uncertainties of at least a few hundred years are unavoidable. Age model uncertainties are smallest during the Holocene (205 yr) and the glacial (360 yr) but are large at the base of the record (1660 yr), due to a combination of decreasing sample density, larger calibration uncertainties and increases in radiocarbon age scatter. For portions of the chronology older than ~ 35 cal kyr, additional considerations, such as the use of a low-blank graphitization system and more rigorous sample pretreatment were necessary to generate a reliable age depth model because of the incorporation of small amounts of younger carbon. A comparison of radiocarbon age model results and lamination counts over the time interval ~ 15–30 cal kyr agree with an overall discrepancy of ~ 10% and display similar changes in sedimentation rate, supporting the annual nature of sediment laminations in the early part of the record. Changes in sedimentation rates reconstructed from the age-depth model indicate that intervals of enhanced sediment delivery occurred at 16–19, 24 and 29–31 cal kyr, broadly synchronous with reconstructed drought episodes elsewhere in northern West Africa and potentially, with changes in Atlantic meridional heat transport during North Atlantic Heinrich events. These data suggest that millennial-scale drought events in the West African monsoon region were latitudinally extensive, reaching within several hundred kilometers of the Guinea coast. This is inconsistent with a simple southward shift in the mean position of the monsoon rainbelt, and requires changes in moisture convergence as a result of either a reduction in the moisture content of the tropical rainbelt, decreased convection, or both.

Publication Year 2012
Title Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling
DOI 10.1016/j.palaeo.2012.08.001
Authors Timothy M. Shanahan, J. Warren Beck, Jonathan T. Overpeck, Nicholas P. McKay, Jeffrey S. Pigati, John A. Peck, Christopher A. Scholz, Clifford W. Heil, John W. King
Publication Type Article
Publication Subtype Journal Article
Series Title Palaeogeography, Palaeoclimatology, Palaeoecology
Index ID 70047464
Record Source USGS Publications Warehouse
USGS Organization Geosciences and Environmental Change Science Center