Skip to main content
U.S. flag

An official website of the United States government

Mapping the altitude of the top of the Dockum Group and paleochannel analysis using surface geophysical methods on and near Cannon Air Force Base in Curry County, New Mexico, 2020

June 22, 2022

The hydrogeology on and near Cannon Air Force Base (AFB) in eastern New Mexico was assessed to gain a better understanding of preferential groundwater flow paths through paleochannels. In and near the study area, paleochannels incised the top surface of the Dockum Group (Chinle Formation) and were subsequently filled in with electrically resistive coarse-grained sediments of the overlying Ogallala Formation, resulting in a preferential groundwater flow path in the form of a paleochannel network. A better understanding of the spatial characteristics of this preferential groundwater flow path is needed to support ongoing efforts to remediate groundwater contamination at Cannon AFB. Therefore, the U.S. Geological Survey, in cooperation with the U.S. Air Force Civil Engineer Center, used surface geophysical resistivity methods and data compiled from previous studies to better understand the spatial distribution and characteristics of the paleochannel network incised into the top of the Dockum Group.

Previous studies have shown these paleochannels incised into the top of the Dockum Group with increasing resolution, but limited borehole data on and near Cannon AFB continued to make accurately mapping the top of Dockum Group challenging. For this study, surface geophysical resistivity measurements in the form of time-domain electromagnetic soundings made by the U.S. Geological Survey were used in conjunction with data previously published by Architecture, Engineering, Construction, Operations, and Management and borehole data compiled from the New Mexico Water Rights Reporting System database to prepare an updated map of the top of the Dockum Group that includes the location and characteristics of paleochannels incised into the top of the Dockum Group (Chinle Formation). A total of 149 borehole picks (determinations of the tops and bases of geologic units and their hydrogeologic-unit equivalents) were obtained from previous studies, along with 72 additional borehole picks from the New Mexico Water Rights Reporting System database and 43 picks from newly collected time-domain electromagnetic soundings. The data were gridded and contoured using Oasis Montaj v. 9.8.1.

The updated map of the top of Dockum Group has many areas of uncertainty greater than 20 feet, because there are not enough data for the gridding process to reliably determine a value. However, this interpretation of the altitude of the top of the Dockum Group represents a substantial improvement in data resolution compared to previous studies.

Two methodologies were used to evaluate paleochannels incised in the top of the Dockum Group across the study area: (1) trend-removal grid analysis and (2) analysis with Esri’s ArcMap Hydrology toolset. These two paleochannel analysis techniques show groundwater flow direction as well as areas having the deepest saturated thickness. Hydrologically, these techniques show where aquifer storage is highest (in the deepest parts of the paleochannel network), as well as the spatial distribution of preferential groundwater flow paths (the paleochannels). The analyses indicate a large paleochannel trending to the southeast, with smaller channels feeding in from the west. Areas where groundwater management could be more beneficial are indicated by locations where these flow lines intersect the deeper parts of the paleochannel.

Citation Information

Publication Year 2022
Title Mapping the altitude of the top of the Dockum Group and paleochannel analysis using surface geophysical methods on and near Cannon Air Force Base in Curry County, New Mexico, 2020
DOI 10.3133/sir20225050
Authors Jason D. Payne, Andrew P. Teeple, Jeremy McDowell, David Wallace, Walker A. Hancock
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2022-5050
Index ID sir20225050
Record Source USGS Publications Warehouse
USGS Organization Oklahoma-Texas Water Science Center