Skip to main content
U.S. flag

An official website of the United States government

Methods for evaluating potential sources of chloride in surface waters and groundwaters of the conterminous United States

September 4, 2015

Chloride exists as a major ion in most natural waters, but many anthropogenic sources are increasing concentrations of chloride in many receiving waters. Although natural concentrations in continental waters can be as high as 200,000 milligrams per liter, chloride concentrations that are suitable for freshwater ecology, human consumption, and agricultural and industrial water uses commonly are on the order of 10 to 1,000 milligrams per liter. “Road salt” frequently is identified as the sole source of anthropogenic chloride, but only about 30 percent of the salt consumed and released to the environment is used for deicing. Furthermore, several studies in Southern States where the use of deicing salt is minimal also show anthropogenic chloride in rising concentrations and in strong correlation to imperviousness and road density. This is because imperviousness and road density also are strongly correlated to population density. The term “road salt” is a misnomer because deicers applied to parking lots, sidewalks, and driveways can be a substantial source of chloride in some catchments because these land covers are comparable to roadways as a percentage of the total impervious area and commonly receive higher salt application rates than some roadways. Other sources of anthropogenic chloride include wastewater, dust control on unpaved roads, fertilizer, animal waste, irrigation, aquaculture, energy production wastes, and landfill leachates. The assumption that rising chloride concentrations in surface water or groundwater is indicative of contamination by deicing chemicals rather than one or more other potential sources may preclude the identification of toxic, carcinogenic, mutagenic, or endocrine-disrupting contaminants that are associated with many sources of elevated chloride concentrations. Once the sources of anthropogenic chloride in an area of interest have been identified and measured, water and solute budgets can be estimated to guide decisionmakers to identify and apply potential mitigation measures that can reduce the problem.

Scientists, engineers, regulators, and decisionmakers need information about potential sources of chloride, water and solute budgets, and methods for collecting water-quality data to help identify potential sources. This information is needed to evaluate potential sources of chloride in areas where chloride may have adverse ecological effects or may degrade water supplies used for drinking water, agriculture, or industry. Knowledge of potential sources will help decisionmakers identify the best mitigation measures to reduce the total background chloride load, thereby reducing the potential for water-quality exceedances that occur because of superposition on rising background concentrations. Also, knowledge of potential sources may help decisionmakers identify the potential for the presence of contaminants that have toxic, carcinogenic, mutagenic, or endocrine-disrupting effects at concentrations that are lower by orders of magnitude than the chloride concentrations in the source water. This report is a comprehensive synthesis of relevant information, but it is not the result of an exhaustive search for literature on each topic. The potential adverse effects of chloride on infrastructure and the environment are not discussed in this report because these issues have been extensively documented elsewhere.

Publication Year 2015
Title Methods for evaluating potential sources of chloride in surface waters and groundwaters of the conterminous United States
DOI 10.3133/ofr20151080
Authors Gregory E. Granato, Leslie A. DeSimone, Jeffrey R. Barbaro, Lillian C. Jeznach
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2015-1080
Index ID ofr20151080
Record Source USGS Publications Warehouse
USGS Organization Massachusetts Water Science Center