Skip to main content
U.S. flag

An official website of the United States government

Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

January 1, 2010

This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were:


1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

2. Does water residence time influence MeHg dynamics?

3. Does the application of sulfate-based fertilizer impact MeHg production rates?

4. Does the presence (or absence) of vegetation influence MeHg production rates?


Measurements of MeHg concentrations in sediment, water, and biota (plants, invertebrates, and fish) were made to assess management-level patterns in five wetland types, which included three type of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow) and two types of managed wetlands (permanently and seasonally flooded). To strengthen our understanding of the processes underlying the seasonal and spatial patterns of MeHg cycling, additional exploratory factors were measured including ancillary sediment and water quality parameters, stable isotope fractionation (oxygen, sulfur, carbon, and nitrogen), photodemethylation rates, and daily-integrated hydrologic budgets. Samples and field data were collected from May 2007 to July 2008, and nearly all sample analyses were completed by September 2008 as per the Quality Assurance Program Plan (QAPP) requirements.


Although wetland type was a major factor that drove the study design, within-field hydrology also proved to be an important factor controlling aqueous MeHg and total mercury (THg) concentrations and export. Overall, agricultural wetlands exhibited higher MeHg concentrations in overlying water, sediment, and biota than did managed seasonal and permanent wetlands. This appears to be partly due to higher rates of sediment in microbial production of MeHg on agricultural wetlands during the fall through spring period. Both sulfate- and iron-reducing bacteria have been implicated in the MeHg production process, and both were demonstrably active in all wetlands studied; however, sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands, suggesting that easily-degraded (labile) organic matter, rather than sulfate, was limiting their activity in these field types. The data suggest that agriculturally-managed soils promoted MeHg production through 1) enhanced microbial activity via higher temperatures and larger pools of labile carbon, and 2) enhanced pools of microbially available inorganic divalent mercury (Hg(II)) resulting from a decrease in reduced-sulfur, solid-phase minerals under oxic or only mildly reducing conditions.


MeHg mass balances were assessed by comparing filed-specific MeHg loads for inlets vs. outlet flows. The overall mass balance for MeHg in surface water during the summer irrigation period (June - September 2007) indicated little to no net MeHg export from the six agricultural wetlands taken as a whole. Of the six agricultural wetlands, there was net overall MeHg export from two fields (one fallow and one white rice) during August, and from four of the six fields (one fallow, one white rice, and two wild rice) during September) Over the entire summer irrigation period, two of the fields (one fallow and one wild rive) showed net MeHg export, and the other four fields showed wither net import or no significant change. Rates of measured photomethylation and exchange between sediment and water pools suggest that both processes may be responsible for the lack of MeHg export. Despite significant differences during winter months between fields in surface water concentrations of MeHg, MeHg loads were not calculated in mid-winter because flood waters had overtopped field boundaries and field fidelity could not be established.


During the summer 2007 irrigation season, surface water out-flows from agricultural wetlands were 9%-36% of inlet flows, and evaporation rates explained most of this water loss, with infiltration likely accounting for the remainder. Unfiltered aqueous MeHg concentrations increased from

Publication Year 2010
Title Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass
Authors Lisamarie Windham-Myers, Mark Marvin-DiPasquale, Jacob Fleck, Charles N. Alpers, Joshua T. Ackerman, Collin A. Eagles-Smith, Craig Stricker, Mark Stephenson, David Feliz, Gary Gill, Philip Bachand, Ann Brice, Robin Kulakow
Publication Type Report
Publication Subtype Organization Series
Index ID 70004074
Record Source USGS Publications Warehouse
USGS Organization Branch of Regional Research-Western Region; Forest and Rangeland Ecosys Science Center; Toxic Substances Hydrology Program
Was this page helpful?