Skip to main content
U.S. flag

An official website of the United States government

Multiple climate change-driven tipping points for coastal systems

July 30, 2021

As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.

Publication Year 2021
Title Multiple climate change-driven tipping points for coastal systems
DOI 10.1038/s41598-021-94942-7
Authors Patrick L. Barnard, Jenifer Dugan, Henry M. Page, Nathan J. Wood, Juliette A. Finzi Hart, Daniel Cayan, Li H. Erikson, David A. Hubbard, Monique Myers, John M. Melack, Samuel F. Iacobellis
Publication Type Article
Publication Subtype Journal Article
Series Title Nature--Scientific Reports
Index ID 70223685
Record Source USGS Publications Warehouse
USGS Organization Pacific Coastal and Marine Science Center