Peak streamflow trends in North Dakota and their relation to changes in climate, water years 1921–2020
Standardized guidelines for completing flood-flow frequency analyses are presented in a U.S. Geological Survey Techniques and Methods report known as Bulletin 17C, https://doi.org/10.3133/tm4B5. In recent decades (since about 2000), a better understanding of long-term climatic persistence (periods of clustered floods or droughts, or wet or dry periods) and concerns about potential climate change and land-use change have caused a reexamination of the stationarity assumptions underlying methods in Bulletin 17C. Bulletin 17C does not offer guidance on incorporating nonstationarities and further identifies a need for flood-frequency studies that incorporate changing climate or basin characteristics. As part of that reexamination, a study of annual peak streamflow (peak flow) has begun in the Midwest. This chapter of the study summarizes how hydroclimatic variability affects peak flows in North Dakota.
In this analysis of peak flow, daily streamflow, and climate metrics, four periods were selected: (1) a 100-year period, 1921–2020; (2) a 75-year period, 1946–2020; (3) a 50-year period, 1971–2020; and (4) a 30-year period, 1991–2020. Output from a monthly water-balance model was used for the climate data. Statistical analysis of peak flow consisted of evaluations of autocorrelation, trends, and change points and was augmented with analyses of seasonality and daily streamflow. The long-term pattern of decreasing peak flow in the west and increasing peak flow in the east is a pattern of opposing signals on either side of the 100th meridian. Analyses indicate that a key factor in changing hydroclimatology is the increase in fall precipitation. The trends in soil moisture closely match the trends in annual precipitation. Nonstationary flood-frequency analysis necessitates detailed exploratory data analysis and additional data and information about climate, land use, and other factors. This study provides extensive exploratory analysis for peak flow, daily streamflow, and climate data for North Dakota, setting the stage for informed nonstationary flood-frequency analysis.
Citation Information
| Publication Year | 2025 |
|---|---|
| Title | Peak streamflow trends in North Dakota and their relation to changes in climate, water years 1921–2020 |
| DOI | 10.3133/sir20235064H |
| Authors | Karen Ryberg, Tara Williams-Sether |
| Publication Type | Report |
| Publication Subtype | USGS Numbered Series |
| Series Title | Scientific Investigations Report |
| Series Number | 2023-5064 |
| Index ID | sir20235064H |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Dakota Water Science Center |