Skip to main content
U.S. flag

An official website of the United States government

Maryland-Delaware-D.C. Water Science Center

Welcome to the USGS Water Science Center serving Maryland, Delaware, and Washington, D.C. We operate streamgages, observation wells, and monitoring stations that provide the reliable scientific information needed to understand our natural world.

News

link

USGS post-Ian science continues

link

Response and recovery, preparation and prediction

link

USGS Crews Work Fast to Capture Critical Flooding Measurements in the Mid-Atlantic

Publications

Identifying key stressors driving biological impairment in freshwater streams in the Chesapeake Bay watershed, USA

Biological communities in freshwater streams are often impaired by multiple stressors (e.g., flow or water quality) originating from anthropogenic activities such as urbanization, agriculture, or energy extraction. Restoration efforts in the Chesapeake Bay watershed, USA seek to improve biological conditions in 10% of freshwater tributaries and to protect the biological integrity of existing healt

Going beyond low flows: Streamflow drought deficit and duration illuminate distinct spatiotemporal drought patterns and trends in the U.S. during the last century

Streamflow drought is a recurring challenge, and understanding spatiotemporal patterns of past droughts is needed to manage future water resources. We examined regional patterns in streamflow drought metrics and compared these metrics to low flow timing and magnitude using long-term daily records for 555 minimally disturbed watersheds. For each streamgage, we calculated streamflow drought duration

Microbial community response to a bioaugmentation test to degrade trichloroethylene in a fractured rock aquifer, Trenton, N.J

Bioaugmentation is a promising strategy for enhancing trichloroethylene (TCE) degradation in fractured rock. However, slow or incomplete biodegradation can lead to stalling at degradation byproducts such as 1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Over the course of 7 years, we examined the response of groundwater microbial populations in a bioaugmentation test where an emulsified veg

Science

A Field Method to Quantify Chlorinated Solvent Diffusion, Sorption, Abiotic and Biotic Degradation in Low-Permeability Zones

Strategic Environmental Research and Development Program project ER-2533 In chlorinated-solvent-contaminated fractured-sedimentary-rock aquifers, low-permeability (low-K) strata typically act as long-term or secondary sources of contamination to mobile groundwater in the high-permeability fractures. The fate of dissolved trichloroethene (TCE) in the low-K matrix is controlled by abiotic...
link

A Field Method to Quantify Chlorinated Solvent Diffusion, Sorption, Abiotic and Biotic Degradation in Low-Permeability Zones

Strategic Environmental Research and Development Program project ER-2533 In chlorinated-solvent-contaminated fractured-sedimentary-rock aquifers, low-permeability (low-K) strata typically act as long-term or secondary sources of contamination to mobile groundwater in the high-permeability fractures. The fate of dissolved trichloroethene (TCE) in the low-K matrix is controlled by abiotic...
Learn More

Summarizing Scientific Findings for Common Stakeholder Questions to Inform Nutrient and Sediment Management Activities in the Chesapeake Bay Watershed

Issue: The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay by using a variety of management strategies to reduce nutrient and sediment loads. The partnership uses monitoring results and modeling tools to implement management strategies, relying on the scientific community to synthesize existing information and direct new research to address...
link

Summarizing Scientific Findings for Common Stakeholder Questions to Inform Nutrient and Sediment Management Activities in the Chesapeake Bay Watershed

Issue: The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay by using a variety of management strategies to reduce nutrient and sediment loads. The partnership uses monitoring results and modeling tools to implement management strategies, relying on the scientific community to synthesize existing information and direct new research to address...
Learn More

North Atlantic-Appalachian AI/ML Capabilities

Artificial Intelligence (AI) and Machine Learning (ML) includes a broad suite of flexible data-driven empirical approaches to perform tasks that are difficult to implement using conventional methods. AI and ML harness the power of computing resources to evaluate the underlying patterns and relationships within a dataset without explicit instructions. The North Atlantic-Appalachian AI/ML Capability...
link

North Atlantic-Appalachian AI/ML Capabilities

Artificial Intelligence (AI) and Machine Learning (ML) includes a broad suite of flexible data-driven empirical approaches to perform tasks that are difficult to implement using conventional methods. AI and ML harness the power of computing resources to evaluate the underlying patterns and relationships within a dataset without explicit instructions. The North Atlantic-Appalachian AI/ML Capability...
Learn More