Predicted time from fertilization to maximum wet weight for steelhead alevins based on incubation temperature and egg size (Study site: Western Fishery Research Center, Seattle; Stock: Dworshak hatchery; Year class: 1996)
The accuracy of a model that predicts time between fertilization and maximum alevin wet weight (MAWW) from incubation temperature was tested for steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery on the Clearwater River, Idaho. MAWW corresponds to the button-up fry stage of development. Embryos were incubated at warm (mean=11.6°C) or cold (mean=7.3°C) temperatures and time between fertilization and MAWW was measured for each temperature. Model predictions of time to MAWW were within 1% of measured time to MAWW. Mean egg weight ranged from 0.101-0.136 g among females (mean = 0.116). Time to MAWW was positively related to egg size for each temperature, but the increase in time to MAWW with increasing egg size was greater for embryos reared at the warm than at the cold temperature. We developed equations accounting for the effect of egg size on time to MAWW for each temperature, and also for the mean of those temperatures (9.3°C).
Citation Information
Publication Year | 2012 |
---|---|
Title | Predicted time from fertilization to maximum wet weight for steelhead alevins based on incubation temperature and egg size (Study site: Western Fishery Research Center, Seattle; Stock: Dworshak hatchery; Year class: 1996) |
Authors | Stephen P. Rubin, Reginald R. Reisenbichler, Stacey L. Slatton |
Publication Type | Book Chapter |
Publication Subtype | Book Chapter |
Index ID | 70043948 |
Record Source | USGS Publications Warehouse |
USGS Organization | Western Fisheries Research Center |