Skip to main content
U.S. flag

An official website of the United States government

Prevalence of seismic rate anomalies preceding volcanic eruptions in Alaska

July 20, 2018

Seismic rate increases often precede eruptions at volcanoes worldwide. However, many eruptions occur without such precursors. Additionally, identifying seismic rate increases near volcanoes with high levels of background seismicity is non-trivial and many periods of elevated seismicity occur without ensuing eruptions, limiting their usefulness for forecasting in some cases. Although these issues are commonly known, efforts to quantify them are limited. In this study, we consistently apply a common statistical tool, the β-statistic, to seismically monitored eruptions in Alaska of various styles to determine the overall prevalence of seismic rate anomalies immediately preceding eruptions. We find that 6 out of 20 (30%) eruptions have statistically significant precursory seismic rate increases. Of these 6 eruptions, 3 of them occur at volcanoes with relatively felsic compositions, repose periods >15 years, and VEI ≥ 3. Overall, our results confirm that seismic rate increases are common prior to larger eruptions at long dormant, “closed-system” volcanoes, but uncommon preceding smaller eruptions at more frequently active, “open-system” volcanoes with more mafic magmas. We also explore the rate of other anomalies not precursory to eruptions and investigate their origins. Some of these non-eruptive anomalies can be explained by aftershocks of regional seismic events, magmatic activity that did not lead to eruption, or unrest at other nearby volcanoes. Some open-system volcanoes have high non-eruptive anomaly rates and low pre-eruptive anomaly rates and are thus not amenable to forecasting based on earthquake catalogs. In this study, we find that 31% of anomalies lead to eruption. With continued calibration at more volcanoes, the β-statistic that we apply may be used more broadly to analyze future periods of seismic unrest at other volcanoes, properly placing such episodes into the context of the long-term background rate. These results may be useful for informing future eruption forecasts around the world, and the statistical tool may aid volcano observatories in identifying future seismic rate anomalies under changing network conditions.

Publication Year 2018
Title Prevalence of seismic rate anomalies preceding volcanic eruptions in Alaska
DOI 10.3389/feart.2018.00100
Authors Jeremy D. Pesicek, John Wellik, Stephanie Prejean, Sarah E. Ogburn
Publication Type Article
Publication Subtype Journal Article
Series Title Frontiers in Earth Science
Index ID 70217854
Record Source USGS Publications Warehouse
USGS Organization Volcano Science Center