Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations
The condensation, evolution, and sublimation of seasonal water and carbon dioxide ices were characterized at the Mars Phoenix landing site from Martian northern midsummer to midspring (Ls ∼ 142° – Ls ∼ 60°) for the year prior to the Phoenix landing on 25 May 2008. Ice relative abundances and grain sizes were estimated using data from the Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment aboard Mars Reconnaissance Orbiter and a nonlinear mixing model. Water ice first appeared at the Phoenix landing site during the afternoon in late summer (Ls ∼ 167°) as an optically thin layer on top of soil. CO2 ice appeared after the fall equinox. By late winter (Ls∼ 344°), the site was covered by relatively pure CO2 ice (∼30 cm thick), with a small amount of ∼100 μm diameter water ice and soil. As spring progressed, CO2 ice grain sizes gradually decreased, a change interpreted to result from granulation during sublimation losses. The combined effect of CO2 sublimation and decreasing H2O ice grain sizes allowed H2O ice to dominate spectra during the spring and significantly brightened the surface. CO2 ice disappeared by early spring (Ls ∼ 34°) and H2O ice by midspring (Ls ∼ 59°). Spring defrosting was not uniform and occurred more rapidly over the centers of polygons and geomorphic units with relatively higher thermal inertia values.
Citation Information
Publication Year | 2010 |
---|---|
Title | Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations |
DOI | 10.1029/2009JE003340 |
Authors | Selby Cull, Raymond E. Arvidson, Michael T. Mellon, Sandra M. Wiseman, Roger N. Clark, Timothy N. Titus, Richard V. Morris, Patrick E. McGuire |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Journal of Geophysical Research E: Planets |
Index ID | 70202252 |
Record Source | USGS Publications Warehouse |
USGS Organization | Astrogeology Science Center |