Skip to main content
U.S. flag

An official website of the United States government

Sensitivity of storm response to antecedent topography in the XBeach model

October 21, 2020
Antecedent topography is an important aspect of coastal morphology when studying and forecasting coastal change hazards. The uncertainty in morphologic response of storm-impact models and their use in short-term hazard forecasting and decadal forecasting is important to account for when considering a coupled model framework. This study provided a methodology to investigate uncertainty of profile response within the storm impact model XBeach related to varying antecedent topographies. A parameterized island Gaussian fit (PIGF) model generated an idealized baseline profile and a suite of idealized profiles that vary specific characteristics based on collated observed LiDAR data from Dauphin Island, AL, USA. Six synthetic storm scenarios were simulated on each of the idealized profiles with XBeach in both 1- and 2-dimensional setups and analyzed to determine the morphological response and uncertainty related to the varied antecedent topographies. Profile morphologic response tends to scale with storm magnitude but among the varied profiles there is greater uncertainty in profile response to the medium range storm scenarios than to the low and high magnitude storm scenarios. XBeach can be highly sensitive to morphologic thresholds, both antecedent and time-varying, especially with regards to beach slope.
Publication Year 2020
Title Sensitivity of storm response to antecedent topography in the XBeach model
DOI 10.3390/jmse8100829
Authors Rangley C. Mickey, P. Soupy Dalyander, Robert T. McCall, Davina Passeri
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Marine Science and Engineering
Index ID 70215659
Record Source USGS Publications Warehouse
USGS Organization St. Petersburg Coastal and Marine Science Center