Skip to main content
U.S. flag

An official website of the United States government

Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts

June 1, 2004

The U.S. Geological Survey, in cooperation with the National Park Service, Massachusetts Executive Office of Environmental Affairs, Cape Cod Commission, and the Towns of Eastham, Provincetown, Truro, and Wellfleet, began an investigation in 2000 to improve the understanding of the hydrogeology of the four freshwater lenses of the Lower Cape Cod aquifer system and to assess the effects of changing ground-water pumping, recharge conditions, and sea level on ground-water flow in Lower Cape Cod, Massachusetts.

A numerical flow model was developed with the computer code SEAWAT to assist in the analysis of freshwater and saltwater flow. Model simulations were used to determine water budgets, flow directions, and the position and movement of the freshwater/saltwater interface.

Model-calculated water budgets indicate that approximately 68 million gallons per day of freshwater recharge the Lower Cape Cod aquifer system with about 68 percent of this water moving through the aquifer and discharging directly to the coast, 31 percent flowing through the aquifer, discharging to streams, and then reaching the coast as surface-water discharge, and the remaining 1 percent discharging to public-supply wells. The distribution of streamflow varies greatly among flow lenses and streams; in addition, the subsurface geology greatly affects the position and movement of the underlying freshwater/saltwater interface.

The depth to the freshwater/saltwater interface varies throughout the study area and is directly proportional to the height of the water table above sea level. Simulated increases in sea level appear to increase water levels and streamflows throughout the Lower Cape Cod aquifer system, and yet decrease the depth to the freshwater/saltwater interface. The resulting change in water levels and in the depth to the freshwater/saltwater interface from sea-level rise varies throughout the aquifer system and is controlled largely by non-tidal freshwater streams.

Pumping from large-capacity municipal-supply wells increases the potential for effects on surface-water bodies, which are affected by pumping and wastewater-disposal locations and rates. Pumping wells that are upgradient of surface-water bodies potentially capture water that would otherwise discharge to these surface-water bodies, thereby reducing streamflow and pond levels. Kettle-hole ponds, such as Duck Pond in Wellfleet, that are near the top of a freshwater flow lens, appear to be more susceptible to changing pumping and recharge conditions than kettle-hole ponds closer to the coast or near discharge boundaries, such as the Herring River.

Publication Year 2004
Title Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts
DOI 10.3133/sir20045014
Authors John P. Masterson
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2004-5014
Index ID sir20045014
Record Source USGS Publications Warehouse
USGS Organization New England Water Science Center