Spatiotemporal variations in strain release and seismic rupture in multifault systems: An example from Panamint Valley, southeastern California
Geometrically complex, multifault ruptures have been observed in recent, damaging earthquakes in southeastern California, sparking renewed efforts to identify physical conditions that promote or inhibit fault discontinuity-spanning coseismic ruptures. The likelihood of ruptures propagating across fault discontinuities is thought to be partly controlled by fault geometries, rupture direction, and the history of strain release. However, these parameters vary in space and time over multiple earthquake cycles, making it difficult to forecast the likelihood that an earthquake on one fault will trigger rupture on a nearby fault. Here we use tectono-geomorphic mapping of a geometrically complex fault zone in Panamint Valley, southeastern California, to assess spatiotemporal variations of paleo-rupture patterns and geometries of fault discontinuities over multiple earthquake cycles. First, we identify ten generations of late Pleistocene to Holocene alluvium using geomorphic parameters and luminescence dating to constrain ages of alluvium and bracket late Holocene earthquake timing. Then, we quantify slip kinematics using high-resolution structure from motion digital surface models. We find the Panamint Valley transtensional relay (PVTR) hosted four late Holocene earthquakes, bracketed to ~5.8–3.4 ka, ~3.8–2.2 ka, ~2.4–0.6 ka, and ~0.64–0.16 ka, with ~0.6–1.1 m of slip per event, correlative to Mw ≈ 6.7–6.9 earthquakes. Additionally, we find similarities in earthquake timing on the Ash Hill, PVTR, and Panamint Valley faults and similarities in the slip magnitude and slip kinematics between the Ash Hill and PVTR faults, implying that the PVTR may co-rupture with nearby faults. Paleo-rupture patterns indicate that seismogenic strain transfer may occur through the PVTR, along different combinations of fault segments and jump distances, over multiple earthquake cycles. These data highlight the utility of tectono-geomorphic mapping in evaluating paleo-rupture patterns and suggest that the PVTR may act to propagate and/or arrest rupture between the Ash Hill and Panamint Valley faults.
Citation Information
| Publication Year | 2025 |
|---|---|
| Title | Spatiotemporal variations in strain release and seismic rupture in multifault systems: An example from Panamint Valley, southeastern California |
| DOI | 10.2113/2024/lithosphere_2024_187 |
| Authors | Aubrey LaPlante, Christine Regalla, Israporn Sethanant, Shannon Mahan, Harrison J. Gray |
| Publication Type | Article |
| Publication Subtype | Journal Article |
| Series Title | Lithosphere |
| Index ID | 70273107 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Geosciences and Environmental Change Science Center |