Skip to main content
U.S. flag

An official website of the United States government

Thunderstorms and flooding of August 17, 2007, with a context provided by a history of other large storm and flood events in the Black Hills area of South Dakota

December 2, 2010

The Black Hills area of western South Dakota has a history of damaging flash floods that have resulted primarily from exceptionally strong rain-producing thunderstorms. The best known example is the catastrophic storm system of June 9-10, 1972, which caused severe flooding in several major drainages near Rapid City and resulted in 238 deaths. More recently, severe thunderstorms caused flash flooding near Piedmont and Hermosa on August 17, 2007. Obtaining a thorough understanding of peak-flow characteristics for low-probability floods will require a comprehensive long-term approach involving (1) documentation of scientific information for extreme events such as these; (2) long-term collection of systematic peak-flow records; and (3) regional assessments of a wide variety of peak-flow information. To that end, the U.S. Geological Survey cooperated with the South Dakota Department of Transportation and National Weather Service to produce this report, which provides documentation regarding the August 17, 2007, storm and associated flooding and provides a context through examination of other large storm and flood events in the Black Hills area. The area affected by the August 17, 2007, storms and associated flooding generally was within the area affected by the larger storm of June 9-10, 1972. The maximum observed 2007 precipitation totals of between 10.00 and 10.50 inches occurred within about 2-3 hours in a small area about 5 miles west of Hermosa. The maximum documented precipitation amount in 1972 was 15.0 inches, and precipitation totals of 10.0 inches or more were documented for 34 locations within an area of about 76 square miles. A peak flow of less than 1 cubic foot per second occurred upstream from the 2007 storm extent for streamflow-gaging station 06404000 (Battle Creek near Keystone); whereas, the 1972 peak flow of 26,200 cubic feet per second was large, relative to the drainage area of only 58.6 square miles. Farther downstream along Battle Creek, a 2007 flow of 26,000 cubic feet per second was generated entirely within an intervening drainage area of only 44.4 square miles. An especially large flow of 44,100 cubic feet per second was documented for this location in 1972. The 2007 peak flow of 18,600 cubic feet per second for Battle Creek at Hermosa (station 06406000) was only slightly smaller than the 1972 peak flow of 21,400 cubic feet per second. Peak-flow values from 2007 for three sites with small drainage areas (less than 1.0 square mile) plot close to a regional envelope curve, indicating exceptionally large flow values, relative to drainage area. Physiographic factors that affect flooding in the area were examined. The limestone headwater hydrogeologic setting (within and near the Limestone Plateau area on the western flank of the Black Hills) has distinctively suppressed peak-flow characteristics for small recurrence intervals. Uncertainty is large, however, regarding characteristics for large recurrence intervals (low-probability floods) because of a dearth of information regarding the potential for generation of exceptionally strong rain-producing thunderstorms. In contrast, the greatest potential for exceptionally damaging floods is around the flanks of the rest of the Black Hills area because of steep topography and limited potential for attenuation of flood peaks in narrow canyons. Climatological factors that affect area flooding also were examined. Area thunderstorms are largely terrain-driven, especially with respect to their requisite upward motion, which can be initiated by orographic lifting effects, thermally enhanced circulations, and obstacle effects. Several other meteorological processes are influential in the development of especially heavy precipitation for the area, including storm cell training, storm anchoring or regeneration, storm mergers, supercell development, and weak upper-level air flow. A composite of storm total precipitation amounts for 13 recent individual storm events indicates