Vegetation index methods for estimating evapotranspiration by remote sensing
Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.
Citation Information
Publication Year | 2010 |
---|---|
Title | Vegetation index methods for estimating evapotranspiration by remote sensing |
DOI | 10.1007/s10712-010-9102-2 |
Authors | Edward P. Glenn, Pamela L. Nagler, Alfredo R. Huete |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Surveys in Geophysics |
Index ID | 70005927 |
Record Source | USGS Publications Warehouse |
USGS Organization | Southwest Biological Science Center |