Skip to main content
U.S. flag

An official website of the United States government

Ventilation systems in wetland plant species

July 6, 2022
Molecular oxygen and carbon dioxide may be limited for aquatic plants, but they have various mechanisms for acquiring these gases from the atmosphere, soil, or metabolic processes. The most common adaptations of aquatic plants involve various aerenchymatic structures, which occur in various organs, and enable the throughflow of gases. These gases can be transferred in emergent plants by molecular diffusion, pressurized gas flow, and Venturi-induced convection. In submerged species, the direct exchange of gases between submerged above-ground tissues and water occurs, as well as the transfer of gases via aerenchyma. Photosynthetic O2 streams to the rhizosphere, while soil CO2 streams towards leaves where it may be used for photosynthesis. In floating-leaved plants anchored in the anoxic sediment, two strategies have developed. In water lilies, air enters through the stomata of young leaves, and streams through channels towards rhizomes and roots, and back through older leaves, while in lotus, two-way flow in separate air canals in the petioles occurs. In Nypa Steck palm, aeration takes place via leaf bases with lenticels. Mangroves solve the problem of oxygen shortage with root structures such as pneumatophores, knee roots, and stilt roots. Some grasses have layers of air on hydrophobic leaf surfaces, which can improve the exchange of gases during submergence. Air spaces in wetland species also facilitate the release of greenhouse gases, with CH4 and N2O released from anoxic soil, which has important implications for global warming.

Citation Information

Publication Year 2022
Title Ventilation systems in wetland plant species
DOI 10.3390/d14070517
Authors Lars O. Björn, Beth Middleton, Mateja Germ, Alenka Gaberščik
Publication Type Article
Publication Subtype Journal Article
Series Title Diversity
Index ID 70232528
Record Source USGS Publications Warehouse
USGS Organization Wetland and Aquatic Research Center