Skip to main content
U.S. flag

An official website of the United States government

Water quality of the Chokosna, Gilahina, Lakina Rivers, and Long Lake watershed along McCarthy Road, Wrangell-St. Elias National Park and Preserve, Alaska, 2007-08

December 4, 2011

The Chokosna, Gilahina, and Lakina River basins, and the Long Lake watershed are located along McCarthy Road in Wrangell–St. Elias National Park and Preserve. The rivers and lake support a large run of sockeye (red) salmon that is important to the commercial and recreational fisheries in the larger Copper River. To gain a better understanding of the water quality conditions of these watersheds, these basins were studied as part of a cooperative study with the National Park Service during the open water periods in 2007 and 2008. Water type of the rivers and Long Lake is calcium bicarbonate with the exception of that in the Chokosna River, which is calcium bicarbonate sulfate water. Alkalinity concentrations ranged from 63 to 222 milligrams per liter, indicating a high buffering capacity in these waters. Analyses of streambed sediments indicated that concentrations of the trace elements arsenic, chromium, and nickel exceed levels that might be toxic to fish and other aquatic organisms. However, these concentrations reflect local geology rather than anthropogenic sources in this nearly pristine area. Benthic macroinvertebrate qualitative multi-habitat and richest targeted habitat samples collected from six stream sites along McCarthy Road indicated a total of 125 taxa. Insects made up the largest percentage of macroinvertebrates, totaling 83 percent of the families found. Dipterans (flies and midges) accounted for 43 percent of all macroinvertebrates found. Analysis of the macroinvertebrate data by non-metric multidimensional scaling indicated differences between (1) sites at Long Lake and other stream sites along McCarthy Road, likely due to different basin characteristics, (2) the 2007 and 2008 data, probably from the higher rainfall in 2008, and (3) macroinvertebrate data collected in south-central Alaska, which represents a different climate zone. The richness, abundance, and community composition of periphytic algae taxa was variable between sampling sites. Taxa richness and diversity were highest at the Long Lake outflow site, suggesting that the lake may have contributed planktonic taxa to the periphytic community and (or) created physical and chemical conditions at the outlet that were favorable to a variety of taxa. Long Lake is fed by groundwater and by clear water (non glacial) streams, resulting in relatively high Secchi-disc readings ranging from 17.5 to 23 feet. Depth profiles of water temperature in the lake show a strong stratification during the summer from the surface to about 13 feet, with temperatures ranging from 16 to 5 °C. Depth profiles of dissolved oxygen in the lake show a strong stratification between 26 and 33 feet, below which the concentrations of dissolved oxygen decrease from 10 to 2 milligrams per liter. Because the Long Lake outlet stream supports a large run of sockeye salmon and water temperature is an important factor during its life cycle, a logistic model was used to simulate 1998–2006 water temperatures at this site. Analysis of simulation results for 1998–2008 indicated no significant trends in water temperature. 2007 water temperatures were the highest during the 10-year period.

Related Content