A spring is a place where water moving underground finds an opening to the land surface and emerges, sometimes as just a trickle, maybe only after a rain, and sometimes in a continuous flow. Spring water can also emerge from heated rock underground, giving rise to hot springs.
• Water Science School HOME • Groundwater topics • Surface Water topics • The Water Cycle •
Water cycle components » Atmosphere · Condensation · Evaporation · Evapotranspiration · Freshwater lakes and rivers · Groundwater flow · Groundwater storage · Ice and snow · Infiltration · Oceans · Precipitation · Snowmelt · Springs · Streamflow · Sublimation · Surface runoff
What is a spring?
A spring is a water resource formed when the side of a hill, a valley bottom or other excavation intersects groundwater at or below the local water table, below which the subsurface material is saturated with water. A spring is the result of an aquifer being filled to the point that the water overflows onto the land surface. They range in size from intermittent seeps, which flow only after much rain, to huge pools flowing hundreds of millions of gallons daily.
Springs are not limited to the Earth's surface, though. Recently, scientists have discovered hot springs at depths of up to 2.5 kilometers in the oceans, generally along mid-ocean rifts (spreading ridges). The hot water (over 300 degrees Celsius) coming from these springs is also rich in minerals and sulfur, which results in a unique ecosystem where unusual and exotic sea life seems to thrive.

How are springs formed?
Springs may be formed in any sort of rock. Small ones are found in many places. In Missouri, the largest springs are formed in limestone and dolomite in the karst topography of the Ozarks. Both dolomite and limestone fracture relatively easily. When weak carbonic acid (formed by rainwater percolating through organic matter in the soil) enters these fractures it dissolves bedrock. When it reaches a horizontal crack or a layer of non-dissolving rock such as sandstone or shale, it begins to cut sideways. As the process continues, the water hollows out more rock, eventually admitting an airspace, at which point the spring stream can be considered a cave. This process often takes tens to hundreds of thousands of years to complete.
Water flow from springs
The amount of water that flows from springs depends on many factors, including the size of the caverns within the rocks, the water pressure in the aquifer, the size of the spring basin, and the amount of rainfall. Human activities also can influence the volume of water that discharges from a spring. Groundwater withdrawals in an area can cause water levels in the aquifer system to drop, ultimately decreasing the flow from the spring. Most people probably think of a spring as being like a pool of water—and normally that is the case. But springs can occur when geologic, hydrologic, or human forces cut into the underground layers of soil and rock where water is in movement.
Spring water is not always clear
Water from springs usually is remarkably clear. Water from some springs, however, may be "tea-colored." This picture shows a natural spring in southwestern Colorado. Its red iron coloring and metals enrichment are caused by groundwater coming in contact with naturally occurring minerals present as a result of ancient volcanic activity in the area.
In Florida, many surface waters contain natural tannic acids from organic material in subsurface rocks, and the color from these streams can appear in springs. If surface water enters the aquifer near a spring, the water can move quickly through the aquifer and discharge at the spring vent.
This water is cold and clear—is it fit to drink?
Credit: Briant A Kimball
The quality of the water in the local groundwater system will generally determine the quality of spring water. The quality of water discharged by springs can vary greatly because of factors such as the quality of the water that recharges the aquifer and the type of rocks with which the groundwater is in contact. The rate of flow and the length of the flowpath through the aquifer affects the amount of time the water is in contact with the rock, and thus, the amount of minerals that the water can dissolve.
So, should you feel confident about whipping out your canteen and filling it with cool and refreshing spring water? No, you should be cautious. The temperature of an Ozark spring comes from its passing through rock at a mean annual temperature of 56 degrees Fahrenheit. The water is crudely filtered in the rock, and the time spent underground allows debris and mud to fall out of suspension. If underground long enough, lack of sunlight causes most algae and water plants to die. However, microbes, viruses, and bacteria do not die just from being underground, nor are any agricultural or industrial pollutants removed.
Thermal springs
Credit: Wikipedia
Thermal springs are ordinary springs except that the water is warm and, in some places, hot, such as in the bubbling mud springs in Yellowstone National Park, Wyoming. Many thermal springs occur in regions of recent volcanic activity and are fed by water heated by contact with hot rocks far below the surface. Even where there has been no recent volcanic action, rocks become warmer with increasing depth. In such areas water may migrate slowly to considerable depth, warming as it descends through rocks deep in the Earth. If it then reaches a large crevice that offers a path of less resistance, it may rise more quickly than it descended. Water that does not have time to cool before it emerges forms a thermal spring. The famous Warm Springs of Georgia and Hot Springs of Arkansas are of this type.
Below are other science topics associated with the water cycle.
Precipitation and the Water Cycle
Streamflow and the Water Cycle
Snowmelt Runoff and the Water Cycle
Evaporation and the Water Cycle
The Atmosphere and the Water Cycle
Condensation and the Water Cycle
Infiltration and the Water Cycle
Springs and the Water Cycle
Sublimation and the Water Cycle
Surface Runoff and the Water Cycle
Ice, Snow, and Glaciers and the Water Cycle
Groundwater Flow and the Water Cycle
- Overview
A spring is a place where water moving underground finds an opening to the land surface and emerges, sometimes as just a trickle, maybe only after a rain, and sometimes in a continuous flow. Spring water can also emerge from heated rock underground, giving rise to hot springs.
• Water Science School HOME • Groundwater topics • Surface Water topics • The Water Cycle •
Water cycle components » Atmosphere · Condensation · Evaporation · Evapotranspiration · Freshwater lakes and rivers · Groundwater flow · Groundwater storage · Ice and snow · Infiltration · Oceans · Precipitation · Snowmelt · Springs · Streamflow · Sublimation · Surface runoff
What is a spring?
A spring is a water resource formed when the side of a hill, a valley bottom or other excavation intersects groundwater at or below the local water table, below which the subsurface material is saturated with water. A spring is the result of an aquifer being filled to the point that the water overflows onto the land surface. They range in size from intermittent seeps, which flow only after much rain, to huge pools flowing hundreds of millions of gallons daily.
Springs are not limited to the Earth's surface, though. Recently, scientists have discovered hot springs at depths of up to 2.5 kilometers in the oceans, generally along mid-ocean rifts (spreading ridges). The hot water (over 300 degrees Celsius) coming from these springs is also rich in minerals and sulfur, which results in a unique ecosystem where unusual and exotic sea life seems to thrive.
Sources/Usage: Public Domain. Visit Media to see details.Rainbow Springs, Florida, USA. How are springs formed?
Springs may be formed in any sort of rock. Small ones are found in many places. In Missouri, the largest springs are formed in limestone and dolomite in the karst topography of the Ozarks. Both dolomite and limestone fracture relatively easily. When weak carbonic acid (formed by rainwater percolating through organic matter in the soil) enters these fractures it dissolves bedrock. When it reaches a horizontal crack or a layer of non-dissolving rock such as sandstone or shale, it begins to cut sideways. As the process continues, the water hollows out more rock, eventually admitting an airspace, at which point the spring stream can be considered a cave. This process often takes tens to hundreds of thousands of years to complete.
Water flow from springs
The amount of water that flows from springs depends on many factors, including the size of the caverns within the rocks, the water pressure in the aquifer, the size of the spring basin, and the amount of rainfall. Human activities also can influence the volume of water that discharges from a spring. Groundwater withdrawals in an area can cause water levels in the aquifer system to drop, ultimately decreasing the flow from the spring. Most people probably think of a spring as being like a pool of water—and normally that is the case. But springs can occur when geologic, hydrologic, or human forces cut into the underground layers of soil and rock where water is in movement.
Spring water is not always clear
Water from springs usually is remarkably clear. Water from some springs, however, may be "tea-colored." This picture shows a natural spring in southwestern Colorado. Its red iron coloring and metals enrichment are caused by groundwater coming in contact with naturally occurring minerals present as a result of ancient volcanic activity in the area.
In Florida, many surface waters contain natural tannic acids from organic material in subsurface rocks, and the color from these streams can appear in springs. If surface water enters the aquifer near a spring, the water can move quickly through the aquifer and discharge at the spring vent.
This water is cold and clear—is it fit to drink?
Influx of metal-rich groundwater from natural springs (foreground) to Cement Creek, Colorado (background).
Credit: Briant A KimballThe quality of the water in the local groundwater system will generally determine the quality of spring water. The quality of water discharged by springs can vary greatly because of factors such as the quality of the water that recharges the aquifer and the type of rocks with which the groundwater is in contact. The rate of flow and the length of the flowpath through the aquifer affects the amount of time the water is in contact with the rock, and thus, the amount of minerals that the water can dissolve.
So, should you feel confident about whipping out your canteen and filling it with cool and refreshing spring water? No, you should be cautious. The temperature of an Ozark spring comes from its passing through rock at a mean annual temperature of 56 degrees Fahrenheit. The water is crudely filtered in the rock, and the time spent underground allows debris and mud to fall out of suspension. If underground long enough, lack of sunlight causes most algae and water plants to die. However, microbes, viruses, and bacteria do not die just from being underground, nor are any agricultural or industrial pollutants removed.
Thermal springs
Sources/Usage: Some content may have restrictions. Visit Media to see details.Hot springs coexist with icebergs in Greenland. Happy Greenlanders and tourists enjoy the unique experience of dipping in the hot springs while enjoying drifting icebergs floating by on Uunartoq Island at the far southern tip of Greenland. These hot springs provide visitors with perfect bath temperatures of about 100°F.
Credit: WikipediaThermal springs are ordinary springs except that the water is warm and, in some places, hot, such as in the bubbling mud springs in Yellowstone National Park, Wyoming. Many thermal springs occur in regions of recent volcanic activity and are fed by water heated by contact with hot rocks far below the surface. Even where there has been no recent volcanic action, rocks become warmer with increasing depth. In such areas water may migrate slowly to considerable depth, warming as it descends through rocks deep in the Earth. If it then reaches a large crevice that offers a path of less resistance, it may rise more quickly than it descended. Water that does not have time to cool before it emerges forms a thermal spring. The famous Warm Springs of Georgia and Hot Springs of Arkansas are of this type.
- Science
Below are other science topics associated with the water cycle.
Filter Total Items: 16Precipitation and the Water Cycle
The air is full of water, even if you can't see it. Higher in the sky where it is colder than at the land surface, invisible water vapor condenses into tiny liquid water droplets—clouds. When the cloud droplets combine to form heavier cloud drops which can no longer "float" in the surrounding air, it can start to rain, snow, and hail... all forms of precipitation, the superhighway moving water...Streamflow and the Water Cycle
What is streamflow? How do streams get their water? To learn about streamflow and its role in the water cycle, continue reading.Snowmelt Runoff and the Water Cycle
Perhaps you've never seen snow. Or, perhaps you built a snowman this very afternoon and perhaps you saw your snowman begin to melt. Regardless of your experience with snow and associated snowmelt, runoff from snowmelt is a major component of the global movement of water, possibly even if you live where it never snows. Note: This section of the Water Science School discusses the Earth's "natural"...Evaporation and the Water Cycle
Evaporation is the process that changes liquid water to gaseous water (water vapor). Water moves from the Earth’s surface to the atmosphere via evaporation.The Atmosphere and the Water Cycle
The atmosphere is the superhighway in the sky that moves water everywhere over the Earth. Water at the Earth's surface evaporates into water vapor, then rises up into the sky to become part of a cloud which will float off with the winds, eventually releasing water back to Earth as precipitation.Condensation and the Water Cycle
Condensation is the process of gaseous water (water vapor) turning into liquid water. Have you ever seen water on the outside of a cold glass on a humid day? That’s condensation.Infiltration and the Water Cycle
You can't see it, but a large portion of the world's freshwater lies underground. It may all start as precipitation, but through infiltration and seepage, water soaks into the ground in vast amounts. Water in the ground keeps all plant life alive and serves peoples' needs, too.Springs and the Water Cycle
A spring is a place where water moving underground finds an opening to the land surface and emerges, sometimes as just a trickle, maybe only after a rain, and sometimes in a continuous flow. Spring water can also emerge from heated rock underground, giving rise to hot springs.Sublimation and the Water Cycle
Solid, liquid, and gas - the three states of water. We see water freeze, transforming into a solid form such as ice, and we see water evaporate, turning into gas, but... have you ever seen ice transform directly to gas? This process is called sublimation and you can read all about it below.Surface Runoff and the Water Cycle
Runoff is nothing more than water "running off" the land surface. Just as the water you wash your car with runs off down the driveway as you work, the rain that Mother Nature covers the landscape with runs off downhill, too (due to gravity). Runoff is an important component of the natural water cycle. Note: This section of the Water Science School discusses the Earth's "natural" water cycle...Ice, Snow, and Glaciers and the Water Cycle
The water stored in ice and glaciers moves slowly through are part of the water cycle, even though the water in them moves very slowly. Did you know? Ice caps influence the weather, too. The color white reflects sunlight (heat) more than darker colors, and as ice is so white, sunlight is reflected back out to the sky, which helps to create weather patterns.Groundwater Flow and the Water Cycle
Yes, water below your feet is moving all the time, but not like rivers flowing below ground. It's more like water in a sponge. Gravity and pressure move water downward and sideways underground through spaces between rocks. Eventually it emerges back to the land surface, into rivers, and into the oceans to keep the water cycle going.